Engineers and Consultants

Prepared for:

## Maryland Energy Administration

## FINAL DRAFT REPORT

Natural Gas Fuel Switching Potential in Maryland

August 2012

## Table of Contents

1.0 EXECUTIVE SUMMARY ..... 1
1.1 Introduction ..... 1
1.2 Overview of Study Methodology ..... 1
1.3 Natural Gas Availability ..... 3
1.4 Study Results ..... 4
2.0 Introduction ..... 7
2.1 Project History ..... 7
2.2 Overview of this Report ..... 7
3.0 Project Overview and Background ..... 9
3.1 Electricity Consumption in Maryland ..... 9
3.1.1 Introduction ..... 9
3.1.2 Electric Sales Forecast ..... 10
3.2 Residential Electric Usage ..... 10
3.2.1 Residential Electric Customer Forecast ..... 10
3.2.2 Average Annual Electric Use per Residential Customer ..... 11
3.2.3 Residential Customer Saturation Estimates by End Use ..... 11
3.3 Commercial Electricity Sales ..... 12
4.0 Overall Project Methodology ..... 14
4.1 Measure List Development ..... 14
4.2 Measure Characterization ..... 14
4.3 Potential Savings Overview ..... 15
4.4 Technical Potential ..... 16
4.4.1 Core Equation for the Residential Sector ..... 17
4.4.2 Core Equation for the Commercial Sector ..... 17
4.5 Economic Potential ..... 18
4.6 Achievable Potential ..... 18
4.7 Natural Gas Availability ..... 19
4.8 Determining Cost-Effectiveness ..... 19
4.9 Avoided Costs ..... 20
4.10 Free-Ridership versus Free-Drivers ..... 20
5.0 Residential Sector Fuel Switching Potential ..... 22
5.1 Introduction and Summary of Results ..... 22
5.2 Residential Fuel Switching Measures ..... 23
5.3 Characteristics of Residential Fuel Switching Measures ..... 24
5.4 Residential Measure Cost Effectiveness ..... 24
5.5 Residential Technical and Economic Savings Potential ..... 26
5.6 Base Case Achievable Potential Results (60\% Market Penetration) ..... 27
5.7 Residential Market Penetration Scenarios ..... 29
6.0 Commercial Sector Energy Efficiency Potential ..... 33
6.1 Introduction and Summary of Results ..... 33
6.2 Commercial Energy Efficiency Measures ..... 34
6.3 Characteristics of Commercial Energy Efficiency Measures ..... 35
6.4 Commercial Measure Cost Effectiveness ..... 35
6.5 Commercial Technical and Economic Savings Potential ..... 36
6.6 Base Case Achievable Potential Savings (Base Case - 60\% Market Penetration) ..... 37
6.7 Commercial Achievable Market Penetration Scenario Results ..... 40
7.0 Pros and Cons of Electric and Fossil Fuel Program Joint Delivery ..... 44
Appendix A - Residential Sector Data
A-1 Residential Assumptions \& Sources
A-2 Residential Potential Detail
Appendix B - Commercial Sector Data
B-1 Commercial Assumptions \& Sources
A-2 Commercial Potential Detail
Appendix C - Benefit/Cost Model Inputs \& Assumptions
Appendix D - Additional Fuel Switching Program

## List Of Tables

Table 1-1: Natural Gas Fuel Switching Potential - State of Maryland (MWh) ..... 4
Table 1-2: TRC Test Net Present Value Savings for Achievable Potential -60\% Market Penetration Scenario ..... 5
Table 3-1: Forecast of Electric Sales by Class of Service, 2011-2022 (MWh) ..... 10
Table 3-2: Forecast of Residential Electric Customers by Housing Type, 2011-2022 ..... 10
Table 3-3: Estimated Average Annual Electricity Use per Residential Customer by End Use in Maryland 11
Table 3-4: Saturation of Electric Space Heating, Water Heating and Clothes Dryers ..... 11
Table 3-5: Residential Saturation of Space Heating Equipment by Type of Housing Unit ..... 12
Table 3-6: Residential Housing Units That Use Electric Space Heating, Water Heating and Clothes Drying ..... 12
Table 5-1: Summary of Residential Natural Gas Fuel Switching Savings Potential by 2015 and 2020 ..... 22
Table 5-2: List of Residential Fuel Switching Measures ..... 23
Table 5-3: Residential Fuel Switching Measure Screening Results ..... 25
Table 5-4: Residential Fuel Switching Technical Potential Savings by End Use ..... 26
Table 5-5: Residential Fuel Switching Economic Potential Savings by End Use ..... 27
Table 5-6: Residential Achievable Fuel Switching Savings Potential by Measure Type (60\% Market Penetration) ..... 28
Table 5-7: Overall Residential Sector Cost Effectiveness Screening Results (\$ in Millions) ..... 29
Table 5-8: Benefit/Cost Ratios for all Market Penetration Scenarios Using the TRC Test ..... 30
Table 5-9: Residential Incremental and Cumulative Annual Fuel Switching Achievable Savings (80\% Market Penetration) ..... 31
Table 5-10: Residential Incremental and Cumulative Annual Fuel Switching Achievable Savings (60\% Market Penetration) ..... 31
Table 5-11: Residential Incremental and Cumulative Annual Fuel Switching Achievable Savings (40\% Market Penetration) ..... 32
Table 6-1: Summary of Commercial Natural Gas Fuel Switching Savings Potential in 2015 and 2020 ..... 33
Table 6-2: List of Commercial Fuel Switching Efficiency Measures ..... 34
Table 6-3: Measure Characteristics and Cost-Effectiveness Screening Results ..... 35
Table 6-4: Commercial Fuel Switching Technical Potential by End Use ..... 36
Table 6-5: Commercial Fuel Switching Economic Potential by End Use ..... 37
Table 6-6: Commercial Achievable Fuel Switching Savings Potential by Measure Type(60\% Market Penetration) ..... 38
Table 6-7: Overall Commercial Sector Cost Effectiveness Screening Results (\$ in Millions) ..... 39
Table 6-8: Benefit/Cost Ratios for all Market Penetration Scenarios Using the TRC Test. ..... 41
Table 6-9: Commercial Incremental and Cumulative Annual Fuel Switching Achievable Savings (80\% Market Penetration) ..... 42
Table 6-10: Commercial Incremental and Cumulative Annual Fuel Switching Achievable Savings (60\% Market Penetration) ..... 42
Table 6-11: Commercial Incremental and Cumulative Annual Fuel Switching Achievable Savings (40\% Market Penetration) ..... 43
Table 7-1: Single Entity vs. Joint Program Delivery ..... 44
LIST OF FIGURES
Figure 1-1: Types of DSM Potential ..... 3
Figure 1-2: Achievable Natural Gas Fuel Switching Potential by 2020 by Market Sector and End Use (60\% Market Penetration) ..... 5
Figure 1-3: Residential Sector Achievable Fuel Switching Potential in 2020 by Measure ..... 6
Figure 1-4: Commercial Sector Achievable Fuel Switching Potential in 2020 by Measure ..... 6
Figure 3-1: Breakdown of Retail Electric Energy Sales, Maryland, 2011 ..... 9
Figure 3-2: Commercial Electric Heating and Water Heating Sales by Building Type, 2011 ..... 13
Figure 3-3: Commercial Electric Space and Water Heating Use by Equipment Type ..... 13
Figure 4-1: Types of DSM Potential ..... 16
Figure 4-2: Core Equation for the Residential Sector Technical Potential ..... 17
Figure 4-3: Core Equation for Commercial Sector Technical Potential ..... 17
Figure 5-1: Summary of Residential Fuel Switching Savings Potential by 2015 and 2020 ..... 23
Figure 5-2: Residential Sector End-Use Savings as a \% of 2020 Base Case Achievable Potential ..... 28
Figure 5-3: Achievable Potential Savings (MWh) Results for the Residential Sector in all Market Penetration Scenarios ..... 30
Figure 6-1: Summary of Commercial Fuel Switching Savings Potential in 2015 and 2020 ..... 34
Figure 6-2: Commercial Sector End-Use Savings as a \% of 2020 Base Case Achievable Potential ..... 39
Figure 6-3: Achievable Potential Savings (MWh) Results for the Commercial Sector in all Market Penetration Scenarios ..... 40

## ACKNOWLEDGMENTS

This report was prepared for the Maryland Energy Administration (MEA) by GDS Associates, Inc. (GDS). GDS would like to acknowledge the insights, information and critical review of key study inputs and assumptions provided by MEA staff and the overall project leadership that was provided by MEA's program managers, Dennis Hartline and Kevin Lucas.

## Notice

This report was prepared by GDS Associates, Inc., in the course of performing work contracted for and sponsored by MEA. The opinions expressed in this report do not necessarily reflect those of the Sponsor, and reference to any specific product, service, process, or method does not constitute an implied or expressed recommendation or endorsement of it. Further, the Sponsor, and the contractor make no warranties or representations, expressed or implied, as to the fitness for particular purpose or merchantability of any product, apparatus, or service, or the usefulness, completeness, or accuracy of any processes, methods, or other information contained, described, disclosed, or referred to in this report. The Sponsor and the contractor make no representation that the use of any product, apparatus, process, method, or other information will not infringe privately owned rights and will assume no liability for any loss, injury, or damage resulting from, or occurring in connection with, the use of information contained, described, disclosed, or referred to in this report.

### 1.0 ExECUTIVE Summary

### 1.1 Introduction

The need for this analysis was initially created by the Maryland Energy Efficiency Act of 2008, which requires a study of the feasibility of setting energy savings targets in 2015 and 2020 for electric and natural gas companies. MEA contracted with GDS in June of 2012 to conduct this natural gas fuel switching potential study for the State of Maryland. The primary objective of this study is to estimate the technical, economic and achievable electric savings potential associated with natural gas fuel switching in the residential and commercial sectors in the State of Maryland over a 10 year period (2013 to 2022).

For this study, the natural gas fuel switching potential is defined as the potential over time of energy efficient natural gas equipment replacing standard electric equipment. Cost effective fuel switching measures are defined as those that are cost effective according to the Total Resource Cost (TRC) test. All fuel switching measures were screened for cost effectiveness at the measure level; excluding program costs such as program administration and natural gas main connect charges. This screening at the measure level was conducted solely for the purpose of identifying individual measures to be included in the cost-effective natural gas fuel switching potential, independent of how these measures might ultimately be bundled and included in programs. This report also provides natural gas fuel switching potential and TRC test results for three achievable potential scenarios (high, medium and low market penetration of natural gas fuel switching measures).

The last section of this report presents information on natural gas fuel switching plans and programs from other states and identifies options for incorporating fuel switch into existing DSM programs in Maryland.

### 1.2 Overview of Study Methodology

GDS estimated the natural gas fuel switching potential for the following measures:

- Residential Space Heating
- Residential Water Heating
- Residential Clothes Dryers
- Commercial Space Heating
- Commercial Water Heating

The technical, economic and achievable potential were estimated for each natural gas fuel switching measure, where:

Technical Potential is electric energy efficiency savings that would result from the complete and immediate penetration of all analyzed natural gas fuel switching measures in applications where they are deemed to be technically feasible and natural gas is available.

Economic Potential represents that portion of the total technical potential that is cost effective in accordance with the TRC test.

Achievable Potential is defined as savings that would result given an expected market penetration rate of all technically feasible and cost-effective measures over the ten year study horizon. Because market penetration is highly dependent on program design and delivery, including most importantly incentive levels, GDS did not attempt to estimate specific market penetration rates for individual measures in the achievable potential scenarios. This can be done more appropriately when new fuel switching programs are developed or existing programs are modified to include natural gas fuel switching measures identified in this study. Instead this study examined three market penetration scenarios (40\%, 60\%, and 80\%) for the calculations of achievable potential with $60 \%$ representing the medium or base case. The market penetration rate is defined for this study as the percent of cost-effective, technically feasible fuel switching measures that will be installed by customers over the 10 year (20132022) study horizon. The assumed values of market penetration rates are intended to capture likely outcomes of successful, well managed and well-funded programs. The 80 percent market penetration scenario (the "high case" scenario) would require very aggressive funding, and a concerted, sustained campaign involving highly aggressive programs and market interventions. It should be viewed as a best estimate of the "high case" achievable cost effective potential for the natural gas fuel switching measures included in this study.

The incentive levels associated with these market penetration scenarios was assumed to be $45 \%, 72.5 \%$, and $100 \%$ respectively. The $45 \%$ figure is based on an analysis of the BG\&E gas conversion filing and the non-connection incentives, and is assumed to represent a low incentive level in this study. The $100 \%$ incentive level is used to represent the maximum achievable potential that could be captured as defined by the National Action Plan for Energy Efficiency. ${ }^{1}$ The $72.5 \%$ figure is an average of the $45 \%$ and $100 \%$ incentive levels, and is assumed to represent a base case incentive level in this study.

The achievable potential reflects the market driven implementation of fuel switching measures. In other words, it was assumed that existing electric equipment will be replaced at the end of the equipment's effective useful life. For example, only half of the electric boilers with a 20 year useful life are assumed to be replaced over the 10 year study horizon. The 80 percent market penetration rate assumed in the achievable potential scenario is applied to the electric equipment that is expected to be replaced over the 10 year study horizon to determine the number of replaced units that will be switched to natural gas.

Figure 1-1 below shows a picture of how these three types of energy efficiency potential relate to each other. Table 1-1, later in the executive summary, provides a summary of the technical, economic and achievable potential for natural gas savings in the years 2015 and 2020.

[^0]Figure 1-1: Types of DSM Potential ${ }^{2}$


The general methodology used for estimating the potential for natural gas fuel switching in the residential and commercial sectors for the years 2013-2022 includes the following major steps:

1. Identify natural gas fuel switching measures to be included in the assessment.
2. Collect and analyze the baseline and forecasted characteristics of the electric end use markets, including residential equipment saturations and commercial consumption, by market segment and end use.
3. Determine the characteristics of each natural gas fuel switching measure including the saturation of the end-use or percent of applicable electric use to which the measure applies, its incremental cost (compared to standard efficiency electric equipment), electric savings, increased natural gas use, the effective useful life of the measure and its technical feasibility.
4. Screen each measure to determine cost effectiveness according to the Total Resource Cost (TRC) Test. This included avoided cost benefits associated with the elimination of electric load and the offsetting increase in natural gas consumption that would occur.
5. Sort measures from most to least cost effective.
6. Estimate technical potential (immediate penetration of all measures) by integrating measure characteristics such as savings factors, base saturations and use, the remaining end uses to be replaced with the measure, technical feasibility and the availability of natural gas.
7. Produce estimates of economic potential by removing measures from the technical potential analysis that are not cost-effective.
8. Apply achievable penetration rates and natural equipment replacement rates to determine a range of the achievable potential over the ten year study horizon.

### 1.3 Natural Gas Availability

For this study, natural gas availability is defined as the percent of electric customers in Maryland that either currently possess a natural gas account yet maintain selected electricconsuming end-uses or are on a natural gas main but are not connected. The analysis assumes

[^1]that $100 \%$ of customers with existing gas accounts that continue to use electric space heating, water heating, and/or clothes drying equipment can be converted. Further, based on a review of the BGE and Washington Gas fuel switching program filings provided by MEA, GDS estimates that an additional $6.5 \%$ of current electric customers are on a natural gas main but not connected can also be converted over the study timeframe. It is assumed that this percentage will remain unchanged over the 10 year study period.

### 1.4 Study Results

Table 1-1 below provides a summary of the 2015 and 2020 technical, economic and achievable potential estimates for natural gas fuel switching in the State of Maryland for the residential, and commercial sectors. Estimates of technical and economic potential assume immediate implementation of all eligible measures. Any increase in potential from 2015 to 2020 can be attributed to sector growth through new construction and related activities. Comparatively, achievable potential takes into account the timing of eligible equipment replacement as well as an estimated market penetration rate, resulting in significant growth in potential savings estimates over time. As achievable potential factors in the timing of equipment replacement and a ramped in target market penetration rate which grows over time, it is possible for the achievable potential to be dramatically lower than the economic potential, especially during the early years of the study.

Achievable potential was examined for three market penetration scenarios. Figure 1-2 provides a breakdown of the achievable potential by sector for the years 2015 and 2020 for the base case market penetration scenario ( $60 \%$ long-term market penetration). A more gradual ramp up is forecasted in the residential sector due to market barriers that must be overcome such as limited access to capital and greater financing risks and costs. GDS estimates that the total achievable potential for electric fuel switching savings in Maryland by 2015 is 143,356 MWh, which is approximately $0.25 \%$ of the forecasted retail electric sales in 2015, and by 2020 is 589,918 MWh, which represents approximately $0.97 \%$ of the forecasted electric sales in 2020.

Table 1-1: Natural Gas Fuel Switching Potential - State of Maryland (MWh)

| Summary of Maryland Natural Gas Fuel Switching Potential |  |  |  |
| :--- | :---: | :---: | :---: |
|  |  |  | Achievable <br> 60\% Market <br> Penetration |
| $\mathbf{2 0 1 5}$ | Technical | Economic |  |
| Residential | $1,959,400$ | $1,875,690$ | 62,236 |
| Commercial | 714,380 | 714,380 | 81,120 |
| Total MWh Savings | $2,673,780$ | $2,590,070$ | 143,356 |
| \% of 2015 Forecasted Annual Sales | $4.70 \%$ | $4.55 \%$ | $0.25 \%$ |
| $\mathbf{2 0 2 0}$ | $2,047,566$ | $1,956,993$ | 373,597 |
| Residential | 769,853 | 769,853 | 216,321 |
| Commercial | $2,817,419$ | $2,726,846$ | 589,918 |
| Total MWh Savings | $4.61 \%$ | $4.46 \%$ | $0.97 \%$ |
| \% of 2020 Forecast Annual Sales |  |  |  |

Table 1-2 provides information on the TRC Test results for the base case achievable market penetration scenario ( $60 \%$ long-term market penetration). This table shows that the TRC Test net present value savings to electric ratepayers is $\$ 80.5$ million. The overall TRC Test benefit/cost ratio for this scenario is 1.24 .

Table 1-2: TRC Test Net Present Value Savings for Achievable Potential -60\% Market Penetration Scenario
(\$ in millions)

| Cost Effectiveness Screening Results $\mathbf{- 6 0 \%}$ Market Penetration Scenario |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Market Sector | Present Value of <br> Total Benefits <br> $\mathbf{( \$ 2 0 1 3 )}$ | Present Value <br> of Total Costs <br> $\mathbf{( \$ 2 0 1 3 )}$ | Present Value <br> of Savings <br> $\mathbf{( \$ 2 0 1 3 )}$ | Benefit/Cost <br> Ratio |
| Residential | 303.4 | 254.3 | 49.1 | 1.19 |
| Commercial | 107.9 | 76.7 | 31.2 | 1.41 |
| Total | 411.3 | 331.0 | 80.3 | 1.24 |

Figure 1-2: Achievable Natural Gas Fuel Switching Potential by 2020 by Market Sector and End Use (60\% Market Penetration)


Figures 1-3 and 1-4 show the breakdown of achievable potential in the year 2020 by type of energy efficiency measure for the residential and commercial sectors respectively for the 60\% market penetration scenario.

Figure 1-3: Residential Sector Achievable Fuel Switching Potential in 2020 by Measure ${ }^{3}$


Figure 1-4: Commercial Sector Achievable Fuel Switching Potential in 2020 by Measure


[^2]
### 2.0 Introduction

MEA commissioned this study for the purpose of determining the technical, economic, and achievable potential for natural gas fuel switching in Maryland. This study examines the natural gas fuel switching potential for residential and commercial space heating and water heating, and residential clothes drying. The industrial sector was not included in the analysis because of technical/engineering limitations associated with switching electric process load to an alternative fuel and very limited electric boiler and domestic hot water heating usage. Natural gas fuel switching potential was assessed over a ten year period from 2013 through 2022. Achievable potential was then identified specifically for the years 2015 and 2020.

### 2.1 Project History

In the spring of 2011, MEA identified the need to determine the potential for natural gas energy efficiency savings in Maryland, and to identify the types of natural gas energy efficiency programs and measures that could save the most natural gas and be the most cost effective for the State of Maryland. The need for this analysis was initially created by the Maryland Energy Efficiency Act of 2008, which requires a study of the feasibility of setting energy savings targets in 2015 and 2020 for natural gas companies. MEA contracted with GDS in June of 2011 to conduct a natural gas energy efficiency potential study for the State of Maryland. The study which was completed in November of 2011, did not address natural gas fuel switching opportunities. Instead, an additional study was commissioned to expand the analysis of natural gas energy efficiency opportunities to include switching from electric to natural gas equipment in the residential and commercial sectors in Maryland. This report presents the results of GDS's additional analysis of fuel switching potential.

### 2.2 Overview of this Report

As with any assessment of energy efficiency potential, this study necessarily builds on a large number of assumptions, from average measure lives, savings and costs, to the discount rate for determining the net present value of future savings. While the authors, with the assistance of the MEA, have sought to use the best available data including existing residential and commercial electric baseline studies for Maryland, additional primary data collection to inform the analysis was not called for in the study scope.

Furthermore, the list of analyzed measures represents the most common, commercially available natural gas energy efficiency measures that can replace current electric technologies. No attempt was made to forecast future technologies. Also, there was no attempt to place a dollar value on some difficult to quantify benefits that may result from some measures, such as increased comfort or reduced maintenance, which may in turn support some personal choices to implement a natural gas measures that may otherwise not be cost-effective or only marginally so. Thus, the various potential estimates are specific to and limited by the measures lists and assumptions described in this study.

The remainder of this report is organized as follows:
$>$ Section 3 - Project Overview and Background
> Section 4 - Overall Project Methodology
$>$ Section 5 - Residential Sector Energy Efficiency Potential
$>$ Section 6 - Commercial Sector Energy Efficiency Potential
$>$ Section 7 - Pros and Cons of Electric and Fossil Fuel Program Joint Delivery

### 3.0 Project Overview and Background

This chapter provides key background information used by GDS to determine the economic and achievable potential for natural gas fuel switching in Maryland. It presents the State of Maryland data on electric energy consumption; saturation for electric equipment for which a common natural gas alternative exists; history and forecast of residential electric customers, sales, and revenues; and breakdown of commercial electric sales by type of business type and further by heating and water heating end uses. This data provides the foundation for determining estimates of natural gas fuel switching potential in Maryland. It is important to have information on the current electric consumption levels and uses of electricity for a natural gas alternative as a starting point for the natural gas fuel switching potential study.

### 3.1 Electricity Consumption in Maryland

### 3.1.1 Introduction

Approximately 63,581 MWh were delivered to retail customers in Maryland in 2011, the most recent year where detailed electric consumption data for Maryland is available. Figure 3-1 shows the proportion of electric use by major retail customer segment in Maryland. Residential and commercial customers, the two sectors considered in this study, account for $91 \%$ of total electric consumption in the State.

Figure 3-1: Breakdown of Retail Electric Energy Sales, Maryland, 2011


GDS has characterized electric energy use by customer segment based on the latest historical data available from the U.S. Energy Information Administration (EIA) and forecasts of electric sales and customers developed by GDS for this project. The remainder of this chapter describes forecasted electric use for the residential and commercial segments and usage by those electric end uses that offer the greatest opportunity for fuel switching in Maryland. The sources used to develop this characterization include:

- The 2011 Maryland electric baseline study of the commercial and industrial sectors; ${ }^{4}$
- The 2010 Maryland electric baseline study of the residential sector; ${ }^{5}$
- EIA Annual Energy Outlook Data.

This detailed market assessment of electric end-use saturations and usage is an essential component of this study. In order to estimate the potential for natural gas fuel switching, one must have a thorough understanding of current and forecasted electric use in Maryland.

### 3.1.2 Electric Sales Forecast

GDS developed electric energy sales forecasts for the residential and commercial sectors based on actual 2011 sales and Department of Energy, Energy Information Administration (EIA) forecasts. ${ }^{6}$ These forecasts project that residential electric energy sales will increase from $27,274,000 \mathrm{MWh}$ in 2011 to 29,103,885 MWh in 2022 (representing a compound average annual rate of growth of $0.6 \%)$. Commercial sales are projected to increase from 30,748,000 MWh in 2011 to $33,808,364 \mathrm{MWh}$ in 2022 (representing a compound average annual rate of growth of $0.8 \%$ ). Table 3-1 shows the electric sales forecast for Maryland for the residential and commercial class of service.

Table 3-1: Forecast of Electric Sales by Class of Service, 2011-2022 (MWh)

| Forecast of Electric Sales by Class of Service, 2011-2022 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Class of <br> Service | $\mathbf{2 0 1 1}$ | $\mathbf{2 0 1 2}$ | $\mathbf{2 0 1 5}$ | $\mathbf{2 0 2 0}$ | $\mathbf{2 0 2 2}$ | Compound <br> Annual Growth <br> Rate, 2011-2022 |
| Residential | $27,274,000$ | $26,511,548$ | $26,402,626$ | $28,254,296$ | $29,103,885$ | $0.6 \%$ |
| Commercial | $30,748,000$ | $29,708,631$ | $30,488,158$ | $32,855,609$ | $33,808,364$ | $0.8 \%$ |

### 3.2 Residential Electric Usage

### 3.2.1 Residential Electric Customer Forecast

As shown in Table 3-2, the number of residential electric customers in Maryland is projected to increase on average by 22,031 per year over the period from 2011 to 2022. The compound average annual growth rate for residential electric customers is $0.96 \%$.

Table 3-2: Forecast of Residential Electric Customers by Housing Type, 2011-2022

| Forecast of Residential Electric Customers by Housing Type, 2011-2022 |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Housing Units | $\mathbf{2 0 1 1}$ | $\mathbf{2 0 1 2}$ | $\mathbf{2 0 1 5}$ | $\mathbf{2 0 2 0}$ | $\mathbf{2 0 2 2}$ |
| Single Family, detached | $1,135,947$ | $1,147,435$ | $1,181,898$ | $1,239,338$ | $\mathbf{1 , 2 6 2 , 3 1 5}$ |
| Single Family, attached | 467,170 | 471,895 | 486,068 | 509,691 | 519,140 |
| Multifamily | 40,828 | 41,240 | 42,479 | 44,544 | 45,369 |
| Mobile Homes | 534,498 | 539,903 | 556,120 | 583,147 | 593,958 |
| Total | $2,178,442$ | $2,200,473$ | $2,266,565$ | $2,376,720$ | $2,420,782$ |

[^3]
### 3.2.2 Average Annual Electric Use per Residential Customer

The electric end uses in the residential sector that present the greatest opportunity for replacing with natural gas are space heating, water heating and clothes drying. Table 3-3 shows data on the estimated average annual electric use per residential customer in Maryland for each of the above end uses. These estimated averages are statewide numbers for customers using electricity for the specified end use. The averages are based on REM/Rate ${ }^{7}$ modeling and data from the EPA which were used to estimate the savings for measures included in this study. The averages were cross-checked against known electric equipment saturations and with retail sales of electricity data provided by the U.S. Energy Information Administration (EIA) to ensure reasonableness and confidence in the modeling results.

Table 3-3: Estimated Average Annual Electricity Use per Residential Customer by End Use in Maryland

Estimated Average Annual Electricity Use per Residential Customer by End Use in Maryland

| End Use | Average Annual Use per <br> Customer (kWh) | Data Source |
| :--- | :---: | :--- |
| Space Heating (Includes Air Source <br> Heat Pumps \& Electric Furnaces) | 7,922 | GDS modeling and calculations; EIA |
| Water Heating | 3,493 | GDS modeling and calculations; EIA |
| Clothes Dryer | 900 | EPA |

### 3.2.3 Residential Customer Saturation Estimates by End Use

Tables 3-4 through 3-6 list the latest available information on the saturation (percent of housing units) of electric end uses for Maryland that were considered as fuel switching opportunities in this study. The saturation data for residential end uses was obtained by GDS through a detailed analysis of the KEMA's Residential Baseline Study report.

Table 3-4: Saturation of Electric Space Heating, Water Heating and Clothes Dryers

|  | Maryland Baseline Study, 2011 |
| :--- | :---: |
| End Use | All Housing Units |
| Space Heating | $33.81 \%$ |
| Water Heating | $46.80 \%$ |
| Clothes Dryer | $72.29 \%$ |

Based on the Maryland Energy Baseline Study, Table 3-5 shows that more than one third of residential housing units use electricity for space heating. Additionally, electricity is used for water heating in over 46 percent of Maryland residential housing units.

[^4]Table 3-5: Residential Saturation of Space Heating Equipment by Type of Housing Unit ${ }^{8}$
Residential Saturation of Electric Space Heating and Water Heating Equipment

| Primary Electric <br> Heating <br> (Equipment Type) | Single Family <br> Detached | Single Family <br> Attached | Mobile <br> Homes | Multi- <br> family 2-4 | Multi- family <br> $\mathbf{5 +}$ | Weighted <br> Average |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Electric (Resistance <br> Heat) | $12.05 \%$ | $25.41 \%$ | $26.34 \%$ | $32.16 \%$ | $48.03 \%$ | $23.56 \%$ |
| Electric (Heat Pump) | $12.01 \%$ | $17.49 \%$ | $5.15 \%$ | $3.03 \%$ | $17.86 \%$ | $13.90 \%$ |
| Primary Water <br> Heating <br> (Equipment Type) | Single Family <br> Detached | Single Family <br> Attached | Mobile <br> Homes | Multi- <br> family 2-4 | Multi- family <br> $5+$ | Weighted <br> Average |
| Electric Tank | $38.07 \%$ | $33.59 \%$ | $88.49 \%$ | $40.06 \%$ | $46.39 \%$ | $39.85 \%$ |
| Tankless | $0.61 \%$ | $0.99 \%$ | $0.00 \%$ | $5.15 \%$ | $3.35 \%$ | $1.45 \%$ |

Table 3-6 shows historical and forecast data on the number of residential housing units in Maryland that use electricity for space heating, water heating and clothes drying.

Table 3-6: Residential Housing Units That Use Electric Space Heating, Water Heating and Clothes Drying

| Residential Electric Customers by End Use |  |  |  |
| :---: | :---: | :---: | :---: |
| Year | Space Heating | Water Heating | Clothes Dryer |
| 2011 | 816,044 | 899,696 | $1,574,796$ |
| 2012 | 824,297 | 908,795 | $1,590,722$ |
| 2013 | 832,550 | 917,894 | $1,606,648$ |
| 2014 | 840,803 | 926,993 | $1,622,574$ |
| 2015 | 849,055 | 936,092 | $1,638,500$ |
| 2016 | 857,308 | 945,190 | $1,654,426$ |
| 2017 | 865,561 | 954,289 | $1,670,352$ |
| 2018 | 873,814 | 963,388 | $1,686,279$ |
| 2019 | 882,066 | 972,487 | $1,702,205$ |
| 2020 | 890,319 | 981,585 | $1,718,131$ |
| 2021 | 898,572 | 990,684 | $1,734,057$ |
| 2022 | 906,825 | 999,783 | $1,749,983$ |

### 3.3 Commercial Electricity Sales

Figure 3-2 provides a breakdown of Maryland commercial sector electric sales for heating and water heating end uses by building type. Unlike the residential sector, estimates of commercial natural gas fuel switching potential are based on a breakdown of commercial sales by end uses that can potentially be switched to natural gas.

[^5]Figure 3-2: Commercial Electric Heating and Water Heating Sales by Building Type, 2011


Figure 3-3 provides a breakdown of total commercial sector electric space and water heating use by equipment type. Space heating represents $80 \%$ of total electric space and water heating use with packaged space heating being the largest user at $34 \%$, followed by heat pumps at $22 \%$ and water heating at $20 \%$.

Figure 3-3: Commercial Electric Space and Water Heating Use by Equipment Type


### 4.0 Overall Project Methodology

This section describes the overall methodology used to develop estimates of natural gas fuel switching potential and explains the general steps and methods used at each stage of the analytical process. Specific differences in methodology from one sector to another have been noted throughout the report.

Fuel switching studies involve carrying out a number of analytical steps to produce estimates of fuel switching potential. This study utilizes the GDS Benefit/Cost Screening Tool, and other GDS developed Excel-based models that integrate technology-specific impacts and costs, customer characteristics, residential and commercial electric sales forecasts for Maryland, electric and natural gas avoided cost forecasts and more. Excel was used as the modeling platform to provide transparency to the estimation process and to allow for simple customization based on Maryland's unique characteristics and the availability of Maryland specific model input data.

### 4.1 Measure List Development

Natural gas fuel switching measure lists were based on the GDS team's knowledge and current databases of natural gas end-use technologies and energy efficiency measures, and existing baseline electric end uses that are likely candidates for switching to natural gas. The study scope included natural gas equipment that is currently commercially available.

This study includes natural gas equipment that could be substituted for electric equipment on a replace-on-burnout basis. Replace-on-burnout applies to equipment replacements that are made normally in the market when a piece of equipment is at the end of its useful life. Replace-on-burnout measures are generally characterized by incremental measure costs and savings (e.g. the costs and savings of a high-efficiency natural gas water heater versus standard efficiency electric water heater). For new construction, natural gas fuel switching can be implemented when each new home or building is constructed, thus the rate of availability is a direct function of the rate of new construction.

### 4.2 Measure Characterization

A significant amount of data is needed to estimate the savings potential for individual natural gas fuel switching for the residential and commercial sectors. Therefore, considerable effort was expended to identify, review, and document all available data sources. ${ }^{9}$ This review allowed development of reasonable assumptions regarding measure lives; incremental costs, electric savings and increased natural gas use for each measure included in this study.

Savings: Estimates of base electrical equipment use and replacement natural gas equipment use were developed from a variety of sources, including:

- Existing technical reference manuals (TRMs) including the Vermont TRM, Pennsylvania TRM
- Building energy modeling software and engineering analyses (REM/Rate)

[^6]- Secondary sources such as the American Council for an Energy-Efficient Economy ("ACEEE"), Department of Energy ("DOE"), Energy Information Administration ("EIA"), Energy Star ${ }^{\circledR}$ and other technical potential studies
- Program evaluations conducted by other utilities and program administrators

Measure Costs: Measure costs represent the incremental cost of installing high efficiency natural gas equipment instead of standard efficiency electric equipment. For purposes of this study, nominal measures costs were held constant over time. Cost estimates were typically derived from the following sources:

- Existing technical reference manuals (TRMs) including the Vermont TRM, Pennsylvania TRM
- Mid-Atlantic Technical Reference Manual
- Secondary sources such as ACEEE, Energy Star®, the National Renewable Energy Laboratory, the Northeast Energy Efficiency Partnerships Incremental Cost Study and other technical potential studies
- RS Means Plumbing and HVAC Cost Data

Measure Life: Represents the number of years that energy-using equipment is expected to operate. Useful life estimates were derived from:

- Mid-Atlantic Technical Reference Manual
- GDS Measure Life Report, 2007

Baseline Equipment Saturations: In order to assess the amount of natural gas fuel switching potential, estimates of the current saturation of baseline electrical equipment are necessary. Up-to-date measure saturation data were primarily obtained from the following recent studies:

- Recently completed residential baseline study for Maryland ${ }^{10}$
- Recently completed commercial baseline study for Maryland ${ }^{11}$


### 4.3 Potential Savings Overview

Potential studies typically distinguish between three different types of efficiency potential: technical, economic and achievable. However, because there are often important definitional issues between studies, it is important to understand the definition and scope of each potential estimate as it applies to this analysis.

The first two types of potential, technical and economic, provide a theoretical upper bound for energy savings. Still, even the best designed portfolio of programs is unlikely to capture 100 percent of the technical or economic potential. Therefore, achievable potential attempts to estimate what may realistically be achieved, when it can be captured. Figure 4-1 illustrates the three most common types of efficiency potential.

[^7]Figure 4-1: Types of DSM Potential ${ }^{12}$

| Not <br> Technically <br> Feasible | Technical Potential |  |  |
| :---: | :---: | :---: | :---: |
| Not <br> Technically <br> Feasible | Not <br> Cost <br> Effective |  | Economic Potential |
| Not <br> Technically <br> Feasible | Not <br> Cost <br> Effective | Market <br> Barriers | Maximum Achievable Potential |

### 4.4 Technical Potential

For this fuel switching study, technical potential is defined as the theoretical maximum amount of electric energy use that could be displaced by switching from electric to natural gas equipment (for all identified fuel switching measures), disregarding non-engineering constraints such as cost-effectiveness and the willingness of end-users to adopt the fuel switching measures. It is as a "snapshot" in time assuming immediate implementation of all technologically feasible natural gas fuel switching measures, with additional fuel switching opportunities assumed as they arise from new construction. ${ }^{13}$

This study used a "bottom-up" approach in the residential sector to calculate the natural gas fuel switching potential. A bottom-up approach first starts with the savings and costs associated with replacing one piece of equipment with its efficient or alternative fuel counterpart, and then multiplies these values by the number of measures available to be installed throughout the life of the program. The bottom-up approach is often preferred in the residential sector because of better data availability and greater homogeneity of the building and equipment stock to which measures are applied.

For the commercial sector, a "top-down" approach was used for developing the technical potential estimates. This approach builds an energy use profile based on estimates of sales by business segment and end use. Savings factors (in this case, $100 \%$ of electric energy use) for natural gas fuel switching measures are then applied to applicable end use electric energy estimates after assumptions are made regarding:

1. The fraction of sales that are associated with existing electrical equipment that is capable of being switched to natural gas;
2. The technical/engineering feasibility of each natural gas fuel switching measure, and;
3. The availability of natural gas.
[^8]
### 4.4.1 Core Equation for the Residential Sector

The core equation used in the residential sector technical potential analysis for each individual efficiency measure is shown below in Figure 4-2.

Figure 4-2: Core Equation for the Residential Sector Technical Potential


## Where:

- Base Case Equipment End Use Intensity = the electricity used per customer per year by each base-case technology in each market segment. This is the consumption of the electric energy using equipment that the natural gas equipment replaces.
- Base Case Factor = the fraction of an end use applicable for a fuel switch technology in a given market segment. For example, for residential water heating, this would be the fraction of all residential customers with electric water heating in their households.
- Remaining Factor $=$ the fraction of applicable dwelling units that have not yet been converted to the gas fuel switching measure (100\% of applicable electric equipment for this study).
- Applicability Factor $=$ the fraction of the applicable units that is technically feasible for conversion to natural gas from an engineering/technical perspective (e.g., it may not be possible to replace an electric water heater with natural gas water heater if piped natural gas is not readily available to the home).
- Savings Factor = the percentage reduction in electric use (100\% for this study) resulting from replacement of electric equipment with natural gas equipment.


### 4.4.2 Core Equation for the Commercial Sector

The core equation used in the commercial technical potential analysis for each individual natural gas fuel switching measure is shown below in Figure 4-3.

Figure 4-3: Core Equation for Commercial Sector Technical Potential

| Technical <br> Potential <br> for Fuel <br> Switching$\quad$Total End <br> Use $k W h$ |
| :--- | :--- |
| Sales by |
| Measure |
| Business |
| Type |$\quad \times$| Base Case |
| :--- |
| Factor |$\quad \times$| Remaining |
| :--- |
| Factor |$\quad \times$| Applicability |
| :--- |
| Factor |$\quad \times$| Savings |
| :--- |
| Factor |

## Where:

- Total end use kWh sales by Business Type = the forecasted level of electricity sales for a given end-use (e.g., space heating) in a commercial market segment (e.g., office buildings).
- Base Case factor = the fraction of the end use electric energy that is applicable for the efficient technology in a given market segment. For example, for boiler heating, this would be the fraction of all space heating kWh in a given market segment that is associated with electric boilers.
- Remaining factor $=$ the fraction of applicable kWh sales that are associated with equipment that has not yet been converted to the gas fuel switching measure ( $100 \%$ of applicable end use electricity sales for this study).
- Applicability factor $=$ the fraction of the applicable electric energy that is technically feasible for conversion to natural gas from an engineering/technical perspective (e.g., it may not be possible to replace an electric water heater with natural gas water heater if piped natural gas is not readily available to the business).
- Savings factor $=$ the percentage reduction in electricity consumption (100\% for this study) resulting from application of the efficient technology.


### 4.5 Economic Potential

Economic potential refers to the subset of the technical potential that is cost-effective as compared to conventional supply-side energy resources. Both technical and economic potential are theoretical numbers that assume immediate implementation of natural gas fuel switching measures, with no regard for the gradual "ramping up" process of real-life programs. In addition, they ignore market barriers to ensuring actual implementation. Finally, they only consider the costs of efficiency measures themselves, ignoring any programmatic costs (e.g., marketing, analysis, administration) that would be necessary to capture them. All measures that were not found to be cost-effective based on the results of the Total Resource Cost Test were excluded from future analysis. The TRC Test is defined in greater detail later in this section.

### 4.6 Achievable Potential

Achievable potential is the amount of energy use that can realistically be expected to save assuming a specific market penetration. Achievable potential takes into account barriers that hinder consumer adoption of energy efficiency measures such as financial, political and regulatory barriers, the administrative and marketing costs associated with efficiency programs, and the capability of programs and administrators to ramp up activity over time. For this study, GDS calculated the achievable potential for the 2013 to 2022 time period for three market penetration scenarios: 40 percent, 60 percent and 80 percent. The incentive levels associated with these market penetration scenarios was assumed to be 45\%, 72.5\%, and 100\% respectively. The $45 \%$ figure is based on an analysis of the BG\&E gas conversion filing and the non-connection incentives, and is assumed to represent a low incentive level in this study. The $100 \%$ incentive level is used to represent the maximum achievable potential that could be
captured as defined by the National Action Plan for Energy Efficiency. ${ }^{14}$ The $72.5 \%$ figure is an average of the $45 \%$ and $100 \%$ incentive levels, and is assumed to represent a base case incentive level in this study.

Achievable potential can also vary with program parameters, such as the magnitude of rebates or incentives offered to customers for installing energy efficiency measures and thus, many different scenarios can be modeled. As achievable potential factors in the timing of equipment replacement and a ramped in target market penetration rate which grows over time, it is possible for the achievable potential to be dramatically lower than the economic potential, especially during the early years of the study.

For new construction, fuel switching measures can be implemented when each new home or building is constructed, thus the rate of availability is a direct function of the rate of new construction. For existing buildings, determining the annual rate of availability of savings is more complex. For this study, natural gas fuel switching potential in the existing stock of buildings is assumed to be captured over time as equipment replacements when a piece of electrical equipment is at the end of its effective useful life (referred to as replace on burnout),

For replace on burnout measures, existing electrical equipment is assumed to be replaced with high efficiency natural gas equipment at the time a consumer or business is shopping for a new appliance or other energy consuming equipment, or is in the process of building or remodeling. Using this approach, only electrical equipment that needs to be replaced in a given year is eligible to be switched to natural gas.

### 4.7 Natural Gas Availability

For this study, natural gas availability is defined as the percent of electric customers in Maryland that either currently possess a natural gas account yet maintain selected electricconsuming end-uses or are on a natural gas main but are not connected. The analysis assumes that $100 \%$ of customers with existing gas accounts that continue to use electric space heating, water heating, and/or clothes drying equipment can be converted. Further, based on a review of the BGE and Washington Gas fuel switching program filings provided by MEA, GDS estimates that an additional $6.5 \%$ of current electric customers in Maryland are on a natural gas main but not connected and can also be converted over the study timeframe. It is assumed that this percentage will remain unchanged over the 10 year study period.

### 4.8 Determining Cost-Effectiveness

For the economic and achievable potential it is necessary to develop a method by which it can be determined that a measure is cost-effective. For this study, GDS identified fuel switching measures as cost effective if they passed the TRC test (value of at least 1.0)

The Total Resource Cost (TRC) test measures the net costs of an energy efficiency program as a resource option based on the total costs of the program, including both the participants' and the utility's costs. ${ }^{15}$

[^9]Benefits and Costs: The TRC test represents the combination of the effects of a program on both the customers participating and those not participating in a program. In a sense, it is the summation of the benefit and cost terms in the Participant and the Ratepayer Impact Measure tests, where the revenue (bill) change and the incentive terms intuitively cancel (except for the differences in net and gross savings).

The benefits calculated in the Total Resource Cost Test include the avoided electric supply costs for the periods when there is an electric load reduction, as well as savings or increases of other resources such as natural gas, in the case of fuel switching. The avoided supply costs are calculated using net program savings, which are the savings net of changes in energy use that would have happened in the absence of the program.

The costs in this test are the program costs paid by the utility and the participants plus any increase in supply costs for periods in which load is increased. Thus all equipment costs, installation, operation and maintenance, cost of removal (less salvage value), and administration costs, no matter who pays for them, are included in this test. Any tax credits are considered a reduction to costs in this test.

### 4.9 Avoided Costs

GDS was able to obtain forecasts of electric avoided costs from Baltimore Gas and Electric (BGE), Potomac Edison (PE), Potomac Electric Power Company (PEPCO), Delmarva Power \& Light (DPL) and Southern Maryland Electric Cooperative (SMECO). Avoided costs for each of these utilities were obtained from their 2012-2014 EmPOWER Maryland - Energy Efficiency and Conservation Plans. These avoided electric costs were then weighted by each utility's projected sales in Maryland as reported in Maryland Public Service Commission's 2012 Ten Year Plan of Electric Utilities in Maryland.

Natural gas avoided costs were the same as those used in the 2011 Natural Gas Energy Efficiency Potential Study conducted by GDS for MEA.

### 4.10 Free-Ridership versus Free-Drivers

Free riders are defined as participants in a DSM program who would have implemented the program measure or practice in the absence of the program or monetary incentive. Free drivers, on the other hand, are those who adopt a program measure or practice as an indirect result of the program, but are difficult to identify either because they do not collect an incentive or are not aware of their exposure to the program. The presence of free riders in a program tends to overstate program energy savings results (because free riders would have taken the action in the absence of the program) and complicates the evaluation of the effectiveness of DSM programs. Conversely, if one does not assess the impact of free drivers, this can result in understating a program's energy savings effectiveness. In determining whether a DSM program has had a direct impact on customer energy use, the focus should be on net savings- calculated by determining the share of free riders and free drivers and adjusting the associated savings accordingly.

Although the issue of free riders and free drivers is important, it is also one that is notoriously difficult to measure, and even more difficult to predict. Based on a review of the experiences and practices of energy efficiency program administrators and evaluators at NYSERDA, National Grid, Wisconsin Focus on Energy, the Minnesota Public Service Commission and other organizations, this analysis has adopted the approach that free riders and free drivers offset each other. The result is an assumed net to gross ratio of 1.0 for measures or programs considered in this analysis, where the energy savings that are eventually measured and verified will align exactly with the savings claimed. GDS has reviewed the result of free rider and free driver studies at such organizations and recommends this approach until programs can be fully implemented and follow-up net-to-gross research studies can be conducted to assess these issues.

### 5.0 Residential Sector Fuel Switching Potential

### 5.1 Introduction and Summary of Results

This section of the report presents the estimates of technical, economic, and achievable natural gas fuel switching potential for the existing and new construction market segments of the residential sector in the State of Maryland. The base case achievable potential estimates are based on a market penetration scenario that targets the installation of energy efficient natural gas fueled equipment in $60 \%$ of the remaining eligible market by 2020. This scenario reflects the market driven implementation of fuel switching measures that were modeled as nonretrofit (replace on burn-out) measures. In other words, it was assumed that residential customers would replace existing electric equipment with efficient natural gas measures at the end of the electric equipment's effective useful life.

According to this analysis, the potential for electricity savings resulting from fuel switching in the residential sector are small relative to total electric sales in Maryland. This is due primarily to the small percentage of homes currently using electricity for water heating and space heating that were assumed to have access to gas over the course of the next 10 years. As noted on in Section 4.7, it was assumed that 6.5\% current electric customers not currently connected to natural gas are located on a natural gas main but not connected and that that this percentage will remain unchanged over the 10 year study period. All customers presently connected to a natural gas line but continuing to utilize electric equipment were also eligible for fuel-switching applications.

Figure 5-1 and Table 5-1, below summarize the technical, economic (based on the Total Resource Cost "TRC" test), and achievable savings potential by 2015 and 2020. If the targeted market penetration for all remaining eligible cost-effective measures can be reached over the next decade, the achievable potential for residential electricity savings by the year 2020 is $373,597 \mathrm{MWh}$, or approximately $1.32 \%$ of projected residential electricity sales.

Market penetration scenarios targeting $40 \%$ and $80 \%$ are also included later in this section to demonstrate the impacts of lowered or increased natural gas fuel switching measure adoption.

Table 5-1: Summary of Residential Natural Gas Fuel Switching Savings Potential by 2015 and 2020

| Summary of Residential Natural Gas Fuel Switching Potential |  |  |  |
| :--- | :---: | :---: | :---: |
|  | Technical | Economic | Achievable <br> $60 \%$ Market <br> Penetration |
| $\mathbf{2 0 1 5}$ |  |  |  |
| Total MWh Savings | $1,959,400$ | $1,875,690$ | 62,236 |
| \% of 2015 Forecast Residential Sales | $7.42 \%$ | $7.10 \%$ | $0.24 \%$ |
| Total Peak Demand Savings (MW) | 378.7 | 378.7 | 13.6 |
| $\mathbf{2 0 2 0}$ |  |  |  |
| Total MWh Savings | $2,047,566$ | $1,956,993$ | 373,597 |
| \% of 2020 Forecast Residential Sales | $7.25 \%$ | $6.93 \%$ | $1.32 \%$ |
| Total Peak Demand Savings (MW) | 397.1 | 397.1 | 81.5 |

Figure 5-1: Summary of Residential Fuel Switching Savings Potential by 2015 and 2020


### 5.2 Residential Fuel Switching Measures

Six unique residential natural gas fuel switching measures were included in the energy savings analysis for the residential sector. ${ }^{16}$ Table 5-2 provides a brief listing of the various residential natural gas fuel switching technologies considered in this analysis. The list of residential fuel switching measures was developed by GDS based on typical fuel-switching opportunities in the residential sector. The set of fuel switching measures considered was pre-screened to only include those measures that are currently commercially available. Thus, emerging technologies, or technologies with extremely low market availability were not included in the analysis. Appendix A-1 provides a brief discussion of each measure or program as well as the savings, useful life, cost, and equipment saturations associated with each measure.

The portfolio of measures includes only those that have some level of technical feasibility for implementation by being applied to existing technologies on a market driven basis. Market driven refers to equipment replacements that are made normally in the market when a piece of equipment is at the end of its effective useful life.

Table 5-2: List of Residential Fuel Switching Measures

| List of Residential |  |  |
| :--- | :--- | :--- |
| Euel Switching Measures |  |  |
| End Use Type | End Use Description | Measures/Programs Included |
| Water Heating | Water | * Efficient storage tank water heaters (0.67 EF, 0.80 |
|  | Heating/Kitchen/Laundry | EF) <br> * Tankless water heaters (0.82 EF) |

[^10]|  | List of Residential |  |
| :--- | :--- | :--- |
| End Use Type Switching Measures |  |  |
| End Use Description | Measures/Programs Included |  |
| (Equipment) | Heating <br> Equipment/Controls | * Efficient gas furnace (90 AFUE, 92 AFUE, 94 AFUE) <br>  |
| Gafficient furnace fan motor |  |  |
| * Efficient dual fuel heat pump (90 AFUE) |  |  |

### 5.3 Characteristics of Residential Fuel Switching Measures

GDS collected data on the energy savings, incremental costs, useful lives, and other key "per unit" characteristics for each of the residential natural gas fuel switching technologies. Estimates of the size of the eligible market were also developed for each efficiency measure. For example, natural gas water heating fuel switching measures (e.g. efficient storage tank water heaters, tankless gas water heaters) are only applicable to homes that currently have electric water heating. Due to differences in the saturation of appliances and equipment, such as electric water heating, for detached single-family homes, attached single-family homes and multi-family homes, GDS estimated the fuel switching potential for these housing types separately. To obtain up-to-date appliance and end-use saturation data, GDS made extensive use of the 2011 Maryland Energy Baseline Study as well as other available regional data, such as EIA's 2009 Residential Energy Consumption Survey (RECS).

The estimate of the percentage of homes that already have fuel switching measures installed is assumed to be $0 \%$. This assumption is based on the fact that the study only includes homes using equipment fueled by electricity which have the opportunity to switch to equipment fueled by natural gas.

### 5.4 Residential Measure Cost Effectiveness

GDS screened individual residential natural gas fuel switching measures to determine their cost effectiveness in accordance with the Total Resource Cost test. Benefits and costs were calculated by incorporating the various measure assumptions (electricity energy and demand savings from switching to natural gas, added natural gas requirements, incremental costs, and useful life) into the GDS cost-effectiveness screening tool. Any programmatic costs (e.g., marketing, analysis, administration, gas connection costs) were ignored in the measure-level cost effectiveness analysis in order to determine whether fuel switching technologies were cost-effective on their own merit, prior to any assistance or marketing endeavors from utilities or other organizations. Gas connection costs were factored into the overall portfolio level cost effectiveness calculations.

Table 5-3 below presents the cost effectiveness screening results for each residential measure by type of home (single-family/multi-family). Those measures that did not pass the TRC test (benefit/cost ratio of less than 1.0) were not included in the estimates of economic and achievable potential.

A total of 52 fuel switching measures were not cost-effective: 12 single-family detached measures, 13 single-family attached measures, and 27 multi-family measures. The measures that were not cost-effective are excluded from the calculation of economic and achievable potential savings.

Table 5-3: Residential Fuel Switching Measure Screening Results

| Residential Natural Gas Measure Level TRC Screening Results |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Measure Name | Existing vs. New Construction | TRC Ratio (Single-Family Detached) | TRC Ratio (Single-Family Attached) | TRC Ratio (MultiFamily) |
| Water Heating End Use |  |  |  |  |
| High Efficiency Gas Tank WH (0.67 EF) | EX | 1.65 | 1.65 | 1.44 |
| High Efficiency Gas Tank WH (0.80 EF) | EX | 1.53 | 1.53 | 1.33 |
| High Efficiency Tankless WH (0.82 EF) | EX | 1.62 | 1.62 | 1.41 |
| High Efficiency Tankless WH (0.82 EF) | EX | 1.60 | 1.60 | 1.40 |
| High Efficiency Gas Tank WH (0.67 EF) | NC | 1.65 | 1.65 | 1.44 |
| High Efficiency Gas Tank WH (0.80 EF) | NC | 1.53 | 1.53 | 1.33 |
| High Efficiency Tankless WH (0.82 EF) | NC | 1.62 | 1.62 | 1.41 |
| High Efficiency Tankless WH (0.82 EF) | NC | 1.60 | 1.60 | 1.40 |
| HVAC (Equipment) |  |  |  |  |
| High Efficiency Furnace (90 AFUE) (w/ 13 SEER AC) | EX | 3.54 | 2.01 | 0.82 |
| High Efficiency Furnace (92 AFUE) <br> (w/ 13 SEER AC) | EX | 3.41 | 1.94 | 0.80 |
| High Efficiency Furnace (94 AFUE) <br> ( $w / 13$ SEER AC) | EX | 3.29 | 1.87 | 0.78 |
| High Efficiency Furnace w/ ECM (90 AFUE) <br> (w/ 13 SEER AC) | EX | 3.34 | 1.91 | 0.80 |
| High Efficiency Furnace w/ ECM (92 AFUE) (w/ 13 SEER AC) | EX | 3.22 | 1.85 | 0.77 |
| High Efficiency Furnace w/ ECM (94 AFUE) (w/ 13 SEER AC) | EX | 3.12 | 1.79 | 0.75 |
| High Efficiency Furnace (90 AFUE) (w/ 13 SEER AC) | EX | 0.28 | 0.19 | 0.21 |
| High Efficiency Furnace (92 AFUE) (w/ 13 SEER AC) | EX | 0.35 | 0.23 | 0.22 |
| High Efficiency Furnace (94 AFUE) <br> ( $w / 13$ SEER AC) | EX | 0.41 | 0.26 | 0.23 |
| High Efficiency Furnace w/ ECM (90 AFUE) <br> (w/ 13 SEER AC) | EX | 0.33 | 0.23 | 0.23 |
| High Efficiency Furnace w/ ECM (92 AFUE) (w/ 13 SEER AC) | EX | 0.39 | 0.27 | 0.23 |
| High Efficiency Furnace w/ ECM (94 AFUE) (w/ 13 SEER AC) | EX | 0.44 | 0.29 | 0.24 |
| Duel Fuel Heat Pump (13 SEER ; 7.7 HSPF) / High Efficiency Gas Furnace ( 90 AFUE) | EX | 8.13 | 4.67 | 2.02 |
| Duel Fuel Heat Pump (13 SEER ; 7.7 HSPF) / High Efficiency Gas Furnace ( 90 AFUE) | EX | 2.56 | 1.14 | 0.75 |
| High Efficiency Furnace (90 AFUE) <br> ( $w / 13$ SEER AC) | NC | 3.55 | 1.38 | 0.40 |
| High Efficiency Furnace (92 AFUE) <br> (w/ 13 SEER AC) | NC | 3.42 | 1.33 | 0.39 |
| High Efficiency Furnace (94 AFUE) <br> (w/ 13 SEER AC) | NC | 3.30 | 1.28 | 0.37 |
| High Efficiency Furnace w/ ECM (90 AFUE) (w/ 13 SEER AC) | NC | 3.33 | 1.30 | 0.39 |
| High Efficiency Furnace w/ ECM (92 AFUE) ( $w / 13$ SEER AC) | NC | 3.21 | 1.26 | 0.38 |


| Residential Natural Gas Measure Level TRC Screening Results |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Measure Name | Existing vs. <br> New <br> Construction | TRC Ratio <br> (Single-Family <br> Detached) | TRC Ratio <br> (Single-Family <br> Attached) | TRC Ratio <br> (Multi- <br> Family) |  |  |
| High Efficiency Furnace w/ ECM (94 AFUE) <br> (w/ 13 SEER AC) | NC | 3.11 | 1.22 | 0.36 |  |  |
| High Efficiency Furnace (90 AFUE) <br> (w/ 13 SEER AC) | NC | 0.21 | 0.17 | 0.23 |  |  |
| High Efficiency Furnace (92 AFUE) <br> (w/ 13 SEER AC) | NC | 0.29 | 0.20 | 0.22 |  |  |
| High Efficiency Furnace (94 AFUE) <br> (w/ 13 SEER AC) | NC | 0.36 | 0.22 | 0.22 |  |  |
| High Efficiency Furnace w/ ECM (90 AFUE) <br> (w/ 13 SEER AC) | NC | 0.25 | 0.19 | 0.23 |  |  |
| High Efficiency Furnace w/ ECM (92 AFUE) <br> (w/ 13 SEER AC) | NC | 0.31 | 0.22 | 0.23 |  |  |
| High Efficiency Furnace w/ ECM (94 AFUE) <br> (w/ 13 SEER AC) | NC | 0.37 | 0.23 | 0.22 |  |  |
| Duel Fuel Heat Pump (13 SEER ; 7.7 HSPF) / <br> High Efficiency Gas Furnace (90 AFUE) | NC | 8.14 | 3.20 | 0.98 |  |  |
| Duel Fuel Heat Pump (13 SEER ; 7.7 HSPF) / <br> High Efficiency Gas Furnace (90 AFUE) | NC | 2.31 | 0.85 | 0.59 |  |  |
| Gas Dryers |  |  |  | 4.20 |  |  |
| Gas clothes dryer | NC | 4.20 | 4.20 | 4.20 |  |  |
| Gas clothes dryer |  |  | 0.20 |  |  |  |

### 5.5 Residential Technical and Economic Savings Potential

In instances where there were two (or more) competing technologies for the same end use, such as high efficiency storage water heating and tankless water heating, GDS assigned a percent of the available population to each measure. In the event that one of the competing measures was not found to be cost-effective, the homes assigned to that measure were transitioned over to the cost-effective alternative (if any).

Technical potential represents the savings that could be captured if 100 percent of the baseline electrical equipment were replaced instantaneously (where they are deemed to be technically feasible). As shown in Table 5-4, total technical potential savings in the Maryland residential sector are $2,047,566 \mathrm{MWh}$, or $7.42 \%$ of forecast residential MWh sales in 2020. Peak demand savings are over 397 MW by 2020.

Table 5-4: Residential Fuel Switching Technical Potential Savings by End Use

| Residential Fuel Switching Technical Potential Savings by End Use |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| End Use | $\mathbf{2 0 1 5}$ <br> MWh | $\mathbf{2 0 2 0}$ <br> $\mathbf{M W h}$ | $\mathbf{2 0 1 5}$ <br> Peak MW | $\mathbf{2 0 2 0}$ <br> Peak MW |
| Water Heating | 510,174 | 534,934 | 49 | 51 |
| HVAC (Equipment) | 802,265 | 834,225 | 0 | 0 |
| Gas Dryer | 646,961 | 678,407 | 330 | 346 |
| Total | $1,959,400$ | $\mathbf{2 , 0 4 7 , 5 6 6}$ | $\mathbf{3 7 9}$ | $\mathbf{3 9 7}$ |
| $\%$ of Annual Sales Forecast | $7.42 \%$ | $7.25 \%$ | - | - |

As shown in Table 5-5, the residential economic fuel switching potential is 1,956,993 MWh in 2020. Peak demand savings are over 397 MW by 2020. The economic potential assumes 100\% of all cost-effective measures eligible for installation are installed, but excludes measures previously included in the technical potential that did not pass the TRC benefit/cost screening test. As a result, the estimates for economic potential are lower than the technical potential estimates.

Table 5-5: Residential Fuel Switching Economic Potential Savings by End Use

| Residential Fuel Switching Economic Potential Savings by End Use |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| End Use | $\mathbf{2 0 1 5}$ <br> $\mathbf{M W h}$ | $\mathbf{2 0 2 0}$ <br> $\mathbf{M W h}$ | $\mathbf{2 0 1 5}$ <br> Peak MW | $\mathbf{2 0 2 0}$ <br> Peak MW |
| Water Heating | 510,174 | 534,934 | 49 | 51 |
| HVAC (Equipment) | 718,555 | 743,652 | 0 | 0 |
| Gas Dryer | 646,961 | 678,407 | 330 | 346 |
| Total | $\mathbf{1 , 8 7 5 , 6 9 0}$ | $\mathbf{1 , 9 5 6 , 9 9 3}$ | $\mathbf{3 7 9}$ | $\mathbf{3 9 7} \mathbf{7}^{\mathbf{1 7}}$ |
| \% of Annual Sales Forecast | $7.10 \%$ | $6.93 \%$ | - | - |

### 5.6 Base Case Achievable Potential Results (60\% Market Penetration)

The achievable potential is a subset of the economic potential and is limited by various market and adoption barriers. Because this analysis has adopted a replace-on-burnout approach for replacing electrical equipment with high efficiency natural gas technologies, each year the eligible market is limited to those measures that are expected to reach the end of their useful life and be targeted for replacement. For example, if a measure has a 20 year useful life, only half of the existing units would be expected to burnout during the 10 year timeframe, and only $1 / 20$ would be eligible for replacement annually.

In the residential base case scenario, the fuel switching achievable potential represents the attainable savings if the market penetration of the selected measures ramps up to replace $60 \%$ of the eligible market turning over each year by 2020. Again, the eligible market refers to homes currently equipped with electric space heating and/or electric water heating that currently have access to natural gas. Based on the high up-front costs associated with replacing standard electric equipment with high efficiency natural gas equipment (including proper venting of natural gas equipment), it was assumed that the targeted market penetration ( $60 \%$ of annual turnover in the base case achievable potential scenario) would not be fully realized until the eighth year of the analysis, and is ramping up during the 2013-2020 time period. Although this methodology simplifies what an adoption curve might look like in practice, it succeeds in providing a concise method for estimating achievable savings potential over a specific period of time.

Table 5-6 provides the achievable potential in the 60\% market penetration base case scenario by measure type. As participation ramps up to $60 \%$ of the remaining eligible annual market turnover, the achievable potential for fuel switching savings in 2015 is estimated at 62,236 MWh 0.24\% of residential electricity sales in 2015. As program participation continues, the

[^11]achievable potential savings increases to 373,597 MWh in 2020, or $1.32 \%$ of 2020 residential sales. Peak demand savings are nearly 82 MW by 2020.

Table 5-6: Residential Achievable Fuel Switching Savings Potential by Measure Type (60\% Market Penetration)

|  Residential Fuel Switching Achievable Potential Savings by End Use <br> (60\% Market Penetration Scenario)  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| End Use | $\mathbf{2 0 1 5}$ <br> MWh | $\mathbf{2 0 2 0}$ <br> MWh | $\mathbf{2 0 1 5}$ <br> Peak MW | $\mathbf{2 0 2 0}$ <br> Peak MW |
| Water Heating | 19,379 | 116,263 | $\mathbf{2}$ | 11 |
| HVAC (Equipment) | 19,841 | 119,225 | 0 | 0 |
| Gas Dryer | 23,016 | 138,109 | 12 | 70 |
| Total | 62,236 | 373,597 | $\mathbf{1 4}$ | $\mathbf{8 2}$ |
| \% of Annual Sales Forecast | $0.24 \%$ | $1.32 \%$ | - | - |

Figure 5-2 provides a detailed breakdown of the end-use savings as a percent of the total achievable potential for the 60\% market penetration scenario. The opportunities for natural gas fuel switching are fairly evenly distributed across Gas Drying (37\%), HVAC Equipment (32\%), and Water Heating (31\%) of the total achievable potential in 2020. Note that the gas drying end use has the greatest amount of potential relative to water heating and HVAC equipment primarily due to the large amount of customers who are currently connected to gas yet continue to use electric dryers compared to electric space heating and water heating equipment as well as the assumption that homes currently supplied with gas can adopt the fuel switching measures at a much greater rate than homes not currently supplied with natural gas.

Figure 5-2: Residential Sector End-Use Savings as a \% of 2020 Base Case Achievable Potential


For the achievable potential, the $60 \%$ market penetration scenario assumes that consumers would receive a financial incentive equal to approximately $70 \%$ of the incremental cost of the natural gas fuel switching measure. In addition, an overall non-incentive or administrative cost was assigned to each measure in order to run the achievable cost-effectiveness tests. Nonincentive costs were estimated at approximately $30 \%$ of the incentive cost per participant. Non-
incentive costs include marketing, education, program delivery, fulfillment, program tracking, reporting, and evaluation.

The overall benefit/cost screening results for the residential sector $60 \%$ market penetration scenario are shown below in Table 5-7. The net present value costs (in \$2013) include \$227.8 million dollars of utility costs (for incentive payments to participants as well as the associated costs for program marketing, labor, monitoring, as well as any assumed connection costs) and $\$ 26.4$ million in net participant costs associated with the purchase and installation of efficient natural gas technologies (after incentives). The net present value benefits of $\$ 303.4$ million dollars represent the lifetime benefits of all measures installed during the same time period.

Table 5-7: Overall Residential Sector Cost Effectiveness Screening Results (\$ in Millions)

| Residential Sector Cost Effectiveness Screening Results $-60 \%$ Market Penetration Scenario |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | Present Value of <br> Total Benefits <br> $(\$ 2013)$ | Present Value <br> of Utility Costs <br> $(\$ 2013)$ | Present Value of <br> Participant Costs <br> $(\$ 2013)$ | Present Value of <br> Total Costs <br> $(\$ 2013)$ | Benefit/Cost <br> Ratio |
| TRC Test | $\$ 303.4$ | $\$ 227.8$ | $\$ 26.4$ | $\$ 254.3$ | 1.19 |

The base case achievable potential estimates would require an investment in fuel switching from the State of Maryland, its utilities and their consumers totaling $\$ 254.3$ million for utility and participant costs combined. The resulting energy and demand savings would yield an estimated net present value savings (benefits minus costs) of $\$ 49.1$ million dollars (in $\$ 2013$ ).

### 5.7 Residential Market Penetration Scenarios

In addition to the $60 \%$ market penetration scenario results presented above, this report also includes a low and high case market penetration scenario. The low case scenario achieves approximately $40 \%$ market penetration by 2020 ; the high case achieves $80 \%$ market penetration by 2020. As noted earlier, the $60 \%$ market penetration assumed financial incentives equal to approximately $70 \%$ ( $72.5 \%$ ) of the measure incremental cost. The high upfront cost of fuel switching technologies is an important adoption barrier and altering incentive levels is likely to have an impact on the achievable market potential. The low and high case scenarios illustrate the impacts of changing the incentive level.

Financial incentives equal to $100 \%$ and $45 \%$ of the measure incremental cost were used for the $80 \%$ and $40 \%$ market penetration scenarios, respectively. Similarly, administrative costs were assumed to represent $25 \%$ and $35 \%$ of the total utility budget (excluding connection costs) in the $80 \%$ and $40 \%$ market penetration scenarios.

Figure 5-3 graphically illustrates the low and high case achievable savings by year and compares it to the equivalent base case scenario savings. Table 5-8 shows that the achievable potential savings by 2020 range from a low of $0.88 \%$ in the $40 \%$ market penetration scenario to a high of $2.55 \%$ in the $80 \%$ market penetration scenario. The targeted market penetration is reached in the $4^{\text {th }}$ year of the $80 \%$ market penetration scenario based on the assumption that $100 \%$ incentives will reduce market barriers to customer adoption of fuel switching applications. In the $60 \%$ and $40 \%$ market penetrations, the targeted annual market penetration is not achieved until 2020.

Figure 5-3: Achievable Potential Savings (MWh) Results for the Residential Sector in all Market Penetration Scenarios


Table 5-8 also presents the total benefits and costs for the TRC Test in the $40 \%, 60 \%$, and $80 \%$ market penetration scenarios. The net present value benefits (benefits minus costs) range from approximately $\$ 36.9$ million in the $40 \%$ market penetration scenario to $\$ 77.0$ million in the $80 \%$ market penetration scenario.

Table 5-8: Benefit/Cost Ratios for all Market Penetration Scenarios Using the TRC Test (\$ in millions)

| Benefit/Cost Ratios for all Market Penetration Scenarios Using the TRC Test |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Market Penetration Scenario | MWh <br> Savings <br> 2015 | $\begin{aligned} & \text { \% of } \\ & 2015 \end{aligned}$ <br> Forecast | MWh <br> Savings $2020$ | $\begin{aligned} & \% \text { of } \\ & 2020 \end{aligned}$ <br> Forecast | Present Value of Total Benefits (\$2013) | Present Value of Total Costs (\$2013) | Benefit <br> / Cost <br> Ratio |
| 40\% Penetration | 41,749 | 0.16\% | 249,214 | 0.88\% | \$202.1 | \$165.2 | 1.22 |
| 60\% Penetration | 62,236 | 0.24\% | 373,597 | 1.32\% | \$303.4 | \$254.3 | 1.19 |
| 80\% Penetration | 165,873 | 0.63\% | 719,425 | 2.55\% | \$549.3 | \$472.3 | 1.16 |

Finally, annual MWh savings are detailed in Tables 5-9 through 5-11. Annual savings are presented at both incremental annual (savings based on new measures installed in that year) and cumulative annual (savings based on new measures installed in that year as well as any prior year measures installed still producing savings).

Table 5-9: Residential Incremental and Cumulative Annual Fuel Switching Achievable Savings (80\% Market Penetration)

| Incremental Annual MWh Savings - Achievable 80\% |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| End-Use | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
| Water Heating | 8,615 | 17,246 | 25,847 | 34,431 | 34,431 | 34,431 | 34,431 | 34,431 | 34,431 | 34,431 |
| HVAC Equipment | 8,762 | 17,655 | 26,364 | 35,356 | 35,356 | 35,356 | 35,356 | 35,356 | 35,356 | 35,356 |
| Gas Dryers | 10,231 | 20,461 | 30,693 | 40,923 | 40,923 | 40,923 | 40,923 | 40,923 | 40,923 | 40,923 |
| Total | 27,608 | 55,361 | 82,904 | 110,710 | 110,710 | 110,710 | 110,710 | 110,710 | 110,710 | 110,710 |
| \% of Annual Forecast Sales | 0.11\% | 0.21\% | 0.31\% | 0.42\% | 0.41\% | 0.40\% | 0.40\% | 0.39\% | 0.39\% | 0.38\% |
| Cumulative Annual MWh Savings - Achievable 80\% |  |  |  |  |  |  |  |  |  |  |
| End-Use | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
| Water Heating | 8,615 | 25,861 | 51,708 | 86,139 | 120,570 | 155,002 | 189,433 | 223,864 | 258,295 | 292,727 |
| HVAC Equipment | 8,762 | 26,416 | 52,781 | 88,137 | 123,493 | 158,849 | 194,206 | 229,562 | 264,918 | 300,274 |
| Gas Dryers | 10,231 | 30,692 | 61,385 | 102,308 | 143,231 | 184,154 | 225,077 | 266,000 | 306,923 | 347,846 |
| Total | 27,608 | 82,969 | 165,873 | 276,584 | 387,294 | 498,004 | 608,715 | 719,425 | 830,136 | 940,846 |
| \% of Annual Forecast Sales | 0.11\% | 0.32\% | 0.63\% | 1.04\% | 1.43\% | 1.82\% | 2.18\% | 2.55\% | 2.90\% | 3.23\% |

Table 5-10: Residential Incremental and Cumulative Annual Fuel Switching Achievable Savings (60\% Market Penetration)

| Incremental Annual MWh Savings - Achievable 60\% |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| End-Use | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
| Water Heating | 3,240 | 6,442 | 9,697 | 12,914 | 16,159 | 19,366 | 22,597 | 25,847 | 25,847 | 25,847 |
| HVAC Equipment | 3,267 | 6,710 | 9,864 | 13,297 | 16,677 | 19,945 | 23,100 | 26,364 | 26,364 | 26,364 |
| Gas Dryers | 3,834 | 7,673 | 11,508 | 15,347 | 19,181 | 23,018 | 26,854 | 30,693 | 30,693 | 30,693 |
| Total | 10,341 | 20,825 | 31,070 | 41,558 | 52,016 | 62,330 | 72,552 | 82,904 | 82,904 | 82,904 |
| \% of Annual Forecast Sales | 0.04\% | 0.08\% | 0.12\% | 0.16\% | 0.19\% | 0.23\% | 0.26\% | 0.29\% | 0.29\% | 0.28\% |
| Cumulative Annual MWh Savings - Achievable 60\% |  |  |  |  |  |  |  |  |  |  |
| End-Use | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
| Water Heating | 3,240 | 9,682 | 19,379 | 32,293 | 48,452 | 67,818 | 90,416 | 116,263 | 142,110 | 167,958 |
| HVAC Equipment | 3,267 | 9,977 | 19,841 | 33,139 | 49,815 | 69,761 | 92,861 | 119,225 | 145,589 | 171,953 |
| Gas Dryers | 3,834 | 11,507 | 23,016 | 38,363 | 57,543 | 80,562 | 107,416 | 138,109 | 168,801 | 199,494 |
| Total | 10,341 | 31,166 | 62,236 | 103,795 | 155,811 | 218,141 | 290,693 | 373,597 | 456,501 | 539,405 |
| \% of Annual Forecast Sales | 0.04\% | 0.12\% | 0.24\% | 0.39\% | 0.58\% | 0.80\% | 1.04\% | 1.32\% | 1.59\% | 1.85\% |

Table 5-11: Residential Incremental and Cumulative Annual Fuel Switching Achievable Savings (40\% Market Penetration)

| Incremental Annual MWh Savings - Achievable 40\% |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| End-Use | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
| Water Heating | 2,121 | 4,311 | 6,442 | 8,615 | 10,752 | 12,914 | 15,079 | 17,246 | 17,246 | 17,246 |
| HVAC Equipment | 2,296 | 4,523 | 6,710 | 8,762 | 10,995 | 13,297 | 15,423 | 17,655 | 17,655 | 17,655 |
| Gas Dryers | 2,557 | 5,116 | 7,673 | 10,231 | 12,787 | 15,347 | 17,902 | 20,461 | 20,461 | 20,461 |
| Total | 6,974 | 13,949 | 20,825 | 27,608 | 34,535 | 41,558 | 48,403 | 55,361 | 55,361 | 55,361 |
| \% of Annual Forecast Sales | 0.03\% | 0.05\% | 0.08\% | 0.10\% | 0.13\% | 0.15\% | 0.17\% | 0.20\% | 0.19\% | 0.19\% |
| Cumulative Annual MWh Savings - Achievable 40\% |  |  |  |  |  |  |  |  |  |  |
| End-Use | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
| Water Heating | 2,121 | 6,432 | 12,875 | 21,490 | 32,242 | 45,156 | 60,235 | 77,480 | 94,726 | 111,972 |
| HVAC Equipment | 2,296 | 6,819 | 13,528 | 22,290 | 33,285 | 46,583 | 62,005 | 79,660 | 97,315 | 114,970 |
| Gas Dryers | 2,557 | 7,673 | 15,346 | 25,577 | 38,364 | 53,711 | 71,613 | 92,074 | 112,534 | 132,995 |
| Total | 6,974 | 20,923 | 41,749 | 69,357 | 103,891 | 145,450 | 193,853 | 249,214 | 304,575 | 359,936 |
| \% of Annual Forecast Sales | 0.03\% | 0.08\% | 0.16\% | 0.26\% | 0.38\% | 0.53\% | 0.69\% | 0.88\% | 1.06\% | 1.24\% |

### 6.0 Commercial Sector Energy Efficiency Potential

### 6.1 Introduction and Summary of Results

This section of the report provides the estimates of technical, economic and achievable potential for achievable natural gas fuel switching potential for the commercial sector in Maryland. The commercial sector as defined in this analysis is based on the natural gas sales data for the following business segments:

- Warehouse
- Retail
- Grocery
- Office
- Lodging
- Health
- Restaurant
- Education
- Other

Commercial natural gas fuel switching potential estimates can be developed using either a topdown or a bottom-up approach, depending on data availability. A top-down approach was used was used for the commercial sector. This approach builds an energy use profile based on estimates of sales by business segment and end use. Savings factors for energy efficiency measures are then applied to applicable end use energy estimates after assumptions are made regarding the fraction of sales that are associated with inefficient equipment and the technical/engineering feasibility of each energy efficiency measure.

Table 6-1 and Figure 6-1, below, summarize the technical, economic (based on the TRC test), and the achievable savings potential, based upon a 60\% market penetration, for 2015 and 2020. The fuel switching potential for the residential sector assumed that $60 \%$ market penetration would not be fully realized until the eighth year of the analysis due to high up-front costs associated with replacing standard electric equipment with high efficiency natural gas equipment. The ramp-up period for commercial fuel switching utilizes a straight-line curve, assuming that penetration is equally spread among the 10 year analysis period.

Table 6-1: Summary of Commercial Natural Gas Fuel Switching Savings Potential in 2015 and 2020

| Summary of Commercial Natural Gas Fuel Switching Efficiency Potential |  |  |  |
| :--- | :---: | :---: | :---: |
|  | Technical | Economic | Achievable 60\% <br> Market Penetration |
| $\mathbf{2 0 1 5}$ | 714,380 | 714,380 | 81,120 |
| Total MWh Savings | $2.34 \%$ | $2.34 \%$ | $0.27 \%$ |
| \% of 2015 Forecast Commercial Sales | 769,853 | 769,853 | 216,321 |
| 2020 | $2.34 \%$ | $2.34 \%$ | $0.66 \%$ |
| Total MWh Savings |  |  |  |

Figure 6-1: Summary of Commercial Fuel Switching Savings Potential in 2015 and 2020


As can be seen above, all of the commercial technical potential is economically feasible. . The amount of this economic potential that can be achieved by 2020 is approximately $2.4 \%$ of 2020 commercial sales assuming a market penetration rate of $60 \%$ over the next ten years.

### 6.2 Commercial Energy Efficiency Measures

The list of commercial energy efficiency measures was developed by GDS based on a review of measures included in other studies conducted by GDS and research of the latest gas technologies and efficiency standards. Only measures that are commercially available were considered.

A total of 13 commercial natural gas energy efficiency measures were included in the fuel switching efficiency potential analysis. These measures, which impact space and water heating end uses, are summarized below in Table 6-2.

Table 6-2: List of Commercial Fuel Switching Efficiency Measures

| List of Commercial Energy Efficiency Measures |  |  |
| :--- | :--- | :--- |
| End Use Type | End Use Description | Measures Included |
| Space Heating | High Efficiency Gas Boilers | Hot Water Boilers and Condensing Hot <br> Water Boilers |
|  | High Efficiency Gas Furnace | High Efficiency Gas Furnace, Gas Fired <br> Rooftop Units |
| Water Heating | High Efficiency Water Heaters | High Efficiency Stand Alone, Indirect and <br> On-Demand Tankless Water Heaters |

### 6.3 Characteristics of Commercial Energy Efficiency Measures

GDS collected data and developed estimates of measure savings, cost and effective useful life for each of the commercial natural gas energy fuel switching efficiency measures. Savings factors for each measure, which represent the percent savings in annual electric energy use (in this case 100\%) resulting from implementation of the natural gas fuel switching measure, were then applied to the applicable end-use energy. So, for example, water heating measure savings factors were applied to the estimated electric water heating end-use energy that is associated with equipment that has not yet been converted to natural gas and is technically feasible for conversion.

Table 6-3 in the next section shows the measure cost and effective useful life for each commercial fuel switching measure. All measures costs are defined as incremental costs, the cost difference between the standard efficiency electric measure and the replacement natural gas measure. Replace on burn-out measures are generally characterized by incremental measure costs and savings (e.g., the incremental costs and savings of a high-efficiency gas boiler versus a standard efficiency electric boiler).

### 6.4 Commercial Measure Cost Effectiveness

GDS screened individual commercial sector natural gas fuel switching energy efficiency measures to determine their cost effectiveness in accordance with the TRC test. Table 6-3 below shows the screening results for each measure. All measures pass the TRC test (benefit/cost ratio of less than 1.0) and are included in the estimate of economic and achievable economic potential. Benefits and costs were calculated by incorporating the various measure assumptions (electricity energy and demand savings from switching to natural gas, added natural gas requirements, incremental costs, and useful life) into the GDS costeffectiveness screening tool. Any programmatic costs (e.g., marketing, analysis, administration, gas connection costs) were ignored in the measure-level cost effectiveness analysis in order to determine whether fuel switching technologies were cost-effective on their own merit, prior to any assistance or marketing endeavors from utilities or other organizations. Gas connection costs were factored into the overall portfolio level cost effectiveness calculations.

Table 6-3: Measure Characteristics and Cost-Effectiveness Screening Results

| Commercial Natural Gas Measure Level TRC Screening Results |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Measure Name | Savings <br> Factor | Measure <br> Cost | Cost Type: <br> 1=Full <br> 2=Incr. | Useful <br> Life | TRC B/C <br> Ratio |
| Water Heating End Use |  |  |  |  |  |
| On-Demand, Tankless Water Heater (40 <br> gallon, 40,000Btu/h) | $100 \%$ | $\$ 1,954$ | 2 | 20 | 3.43 |
| On-Demand, Tankless Water Heater High <br> Efficiency (40 gallon, 40,000Btu/h) | $100 \%$ | $\$ 2,129$ | 2 | 20 | 4.01 |
| On-Demand, Tankless Water Heater <br> (2 Units, 314,000Btu/h) | $100 \%$ | $\$ 5,506$ | 2 | 20 | 5.53 |
| High Efficiency Stand Alone <br> Commercial Water Heater (Baseline <br> <=75000 Btu) | $100 \%$ | $\$ 1,090$ | 2 | 13 | 3.46 |


| Commercial Natural Gas Measure Level TRC Screening Results |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Measure Name | Savings <br> Factor | Measure <br> Cost | Cost Type: <br> 1=Full <br> 2=Incr. | Useful <br> Life | TRC B/C <br> Ratio |
| Condensing Stand Alone Commercial <br> Water Heater (Baseline >75000 btu) | $100 \%$ | $\$ 16,532$ | 2 | 13 | 1.77 |
| Indirect Water Heater - Combined <br> appliance efficiency rating <br> (CAE)>=85\% | $100 \%$ | $\$ 8,434$ | 2 | 15 | 2.96 |
| Space Heating - Electric Boilers |  |  |  |  |  |
| High Efficiency Hot Water Boiler <br> (<=300,000 Btu/h) | $100 \%$ | $\$ 13,497$ | 2 | 20 | 3.71 |
| Condensing Boiler (<=300,000 Btu/h) | $100 \%$ | $\$ 15,406$ | 2 | 18 | 3.33 |
| Space Heating- Electric Furnace |  |  |  |  | 18 |
| High Efficiency Furnace (<=300,000 <br> Btu/h) | $100 \%$ | $\$ 20,741$ | 2 | 1.92 |  |
| Space Heating- Packaged Resistance <br> Heat |  |  |  |  |  |
| Electric Packaged Resistance Heat to <br> Gas-fired Rooftop Unit | $100 \%$ | $\$ 21,232$ | 2 | 18 | 1.43 |
| Space Heating- Packaged HP, 10 tons |  |  |  |  |  |
| High Efficiency Furnace (<=300,000 <br> Btu/h) | $100 \%$ | $\$ 21,232$ | 2 | 18 | 2.12 |
| Space Heating- Split HP, 5 tons |  |  |  |  |  |
| High Efficiency Furnace (<=300,000 <br> Btu/h) | $100 \%$ | $\$ 8,400$ | 2 | 18 | 2.68 |
| Space Heating - Electric Baseboard |  |  |  |  |  |
| High Efficiency Furnace (<=300,000 <br> Btu/h) | $100 \%$ | $\$ 15,689$ | 2 | 18 | 2.54 |

### 6.5 Commercial Technical and Economic Savings Potential

As can be seen in Table 6-4, technical potential for commercial natural gas energy fuel switching efficiency in Maryland is $2.34 \%$ of the projected 2015 and $2.34 \%$ of 2020 commercial electric sales.

Table 6-4: Commercial Fuel Switching Technical Potential by End Use

| Commercial Natural Gas Fuel Switching Technical Potential Savings by End Use |  |  |
| :--- | :---: | :---: |
| End Use | $\mathbf{2 0 1 5}$ | $\mathbf{2 0 2 0}$ |
| $\mathbf{M W h}$ |  |  |$)$

Table 6-5, shows a breakdown of commercial sector economic potential. Since all space and water heating measures reviewed in the study are cost effective, the economic and technical potential for these measures is the same.

Table 6-5: Commercial Fuel Switching Economic Potential by End Use

| Commercial Natural Gas Fuel Switching Economic Potential Savings by End Use |  |  |
| :--- | :---: | :---: |
| End Use | $\mathbf{2 0 1 5}$ <br> $\mathbf{M W h}$ | $\mathbf{2 0 2 0}$ <br> $\mathbf{M W h}$ |
| Space Heating | 544,485 | 586,765 |
| Water Heating | 169,896 | 183,088 |
| Total | 714,380 | 769,853 |
| \% of Annual Sales Forecast | $2.34 \%$ | $2.34 \%$ |

### 6.6 Base Case Achievable Potential Savings (Base Case - 60\% Market Penetration)

The achievable natural gas fuel switching potential is a subset of the economic potential and is limited by various market and adoption barriers. Because this analysis has adopted a replace-on-burnout approach for replacing standard efficiency electric equipment with high efficiency natural gas technologies, each year the eligible market is limited to those measures that are expected to reach the end of their useful life and be targeted for replacement. For example, if a measure has a 20 year useful life, only half of the existing units would be expected to burnout during the 10 year timeframe, and only $1 / 20$ would be eligible for replacement annually.

In the commercial base case scenario, the natural gas achievable potential represents the attainable savings if: (1) the market penetration of the selected replace on burnout measures represents $60 \%$ of the equipment available for replacement with energy efficiency equipment in each year, and (2) $10 \%$ of all available retrofit measures are installed each year. This this methodology simplifies what an adoption curve might look like in practice, which would be highly dependents of program features and benefits and a capital investment decision making processing the commercial sector that is dependent on many financial, political and corporate and bureaucratic factors.

Table 6-6 provides the achievable potential in the $60 \%$ market penetration base case scenario by measure type. The achievable potential for natural gas fuel switching efficiency savings in 2015 is estimated at $81,293 \mathrm{MWh}$ or $0.27 \%$ of commercial electric sales in 2015. The achievable potential savings is $216,780 \mathrm{MWh}$ in 2020, or $0.66 \%$ of 2020 commercial sales.

## Table 6-6: Commercial Achievable Fuel Switching Savings Potential by Measure Type(60\% Market Penetration)

| Commercial Natural Gas Achievable Fuel Switching Savings Potential (60\% Market Penetration) by Measure Type (MWh) |  |  |
| :---: | :---: | :---: |
| Measure Name | Achievable Potential 2015 | Achievable Potential 2020 |
| Water Heating End Use |  |  |
| On-Demand, Tankless Water Heater (40 gallon, 40,000Btu/h) | 2,826 | 7,536 |
| On-Demand, Tankless Water Heater High Efficiency (40 gallon, 40,000Btu/h) | 2,826 | 7,536 |
| On-Demand, Tankless Water Heater (2 Units, 314,000Btu/h) | 2,826 | 7,536 |
| High Efficiency Stand Alone Commercial Water Heater (Baseline <=75000 Btu) | 4,348 | 11,594 |
| Condensing Stand Alone Commercial Water Heater (Baseline $>75000 \mathrm{btu}$ ) | 4,348 | 11,594 |
| Indirect Water Heater - Combined appliance efficiency rating (CAE)>=85\% | 3,768 | 10,048 |
| Space Heating - Electric Boilers |  |  |
| High Efficiency Hot Water Boiler (<=300,000 Btu/h) | 1,790 | 4,773 |
| Condensing Boiler (<=300,000 Btu/h) | 1,989 | 5,303 |
| Space Heating- Electric Furnace |  |  |
| High Efficiency Furnace (<=300,000 Btu/h) | 3,666 | 9,775 |
| Space Heating- Packaged Resistance Heat |  |  |
| Electric Packaged Resistance Heat to Gas-fired Rooftop Unit | 31,127 | 83,006 |
| Space Heating- Packaged HP, 10 tons |  |  |
| High Efficiency Furnace (<=300,000 Btu/h) | 5,484 | 14,624 |
| Space Heating- Split HP, 5 tons |  |  |
| High Efficiency Furnace (<=300,000 Btu/h) | 6,104 | 16,276 |
| Space Heating - Electric Baseboard |  |  |
| High Efficiency Furnace (<=300,000 Btu/h) | 10,020 | 26,720 |
| Total | 81,120 | 216,321 |
| \% of Annual Sales Forecast | 0.27\% | 0.66\% |

Figure 6-2 provides a detailed breakdown of the end-use savings as a percent of the total achievable potential for the $60 \%$ market penetration scenario. The opportunities for natural gas fuel switching in the commercial sector are predominantly found in converting packaged resistance heat, electric water heating, and electric baseboard heating. Other fuel switching applications include electric heat pumps, furnaces, and boilers.

Figure 6-2: Commercial Sector End-Use Savings as a \% of 2020 Base Case Achievable Potential


For the achievable potential, the $60 \%$ market penetration scenario assumes that consumers would receive a financial incentive equal to approximately $70 \%$ of the incremental cost of the natural gas efficiency measure. In addition, an overall non-incentive or administrative cost was assigned to each measure in order to run the achievable cost-effectiveness tests. Non-incentive costs were estimated at approximately $30 \%$ of the incentive cost per participant. Non-incentive costs include marketing, education, program delivery, fulfillment, program tracking, reporting, and evaluation.

The overall benefit/cost screening results for the commercial sector $60 \%$ market penetration scenario are shown below in Table 5-7. The net present value costs (in \$2013) include $\$ 62.7$ million dollars of utility costs (for incentive payments to participants as well as the associated costs for program marketing, labor, monitoring, as well as any assumed connection costs) and $\$ 14.4$ million in net participant costs associated with the purchase and installation of efficient natural gas technologies (after incentives). The net present value benefits of $\$ 108.5$ million dollars represent the lifetime benefits of all measures installed during the same time period. For the base case market penetration scenario, the TRC benefit/cost ratio for the commercial sector program portfolio is 1.41.

Table 6-7: Overall Commercial Sector Cost Effectiveness Screening Results (\$ in Millions)

| Commercial Sector Cost Effectiveness Screening Results $\mathbf{- 6 0 \%}$ Market Penetration Scenario |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | Present Value of <br> Total Benefits <br> (\$2013) | Present Value <br> of Utility Costs <br> $\mathbf{( \$ 2 0 1 3 )}$ | Present Value of <br> Participant Costs <br> $\mathbf{( \$ 2 0 1 3 )}$ | Present Value <br> of Total Costs <br> $\mathbf{( \$ 2 0 1 3 )}$ | Benefit/Cost <br> Ratio |
| TRC Test | $\$ 107.9$ | $\$ 62.7$ | $\$ 14.3$ | $\$ 76.7$ | 1.41 |

### 6.7 Commercial Achievable Market Penetration Scenario Results

Estimates of achievable potential were developed based on an assumption that the maximum penetration rates for energy efficiency measures over the 10 year study period range from $40 \%$ to $80 \%$. We have used the $60 \%$ market penetration case as the base case for determining achievable potential. The low case scenario achieves approximately $40 \%$ market penetration by 2022; the high case achieves $80 \%$ market penetration by 2022. Figure $6-3$ graphically illustrates the low and high case achievable savings by year and compares it to the base case scenario savings.

Figure 6-3: Achievable Potential Savings (MWh) Results for the Commercial Sector in all Market Penetration Scenarios


As noted earlier, the 60\% market penetration assumed financial incentives equal to $72.5 \%$ of the measure incremental cost. The high up-front cost of energy efficient technologies is an important adoption barrier and altering incentive levels is likely to have an impact on the achievable market potential. The low and high case scenarios illustrate the impacts of changing the incentive level. Financial incentives equal to $100 \%$ and $45 \%$ of the measure incremental cost were assumed for the $80 \%$ and $40 \%$ market penetration scenarios, respectively.

Additionally, program administrative costs were also varied for each scenario to represent the assumption that more aggressive marketing, promotion and program staffing that would be necessary to achieve greater levels of customer participation. However this is not a linear relationship as some administrative costs are either fixed costs or do not vary proportionately with increased program participation. Therefore, administrative costs represent $30 \%$ of the total program budget for the 60\% market penetration scenario, $25 \%$ of the total program budget for the high market penetration scenario and $35 \%$ of the total program budget for the low market penetration scenario. The decline in administrative costs as a percent of the total program budget as assumed market penetration increases reflects both economies of scale for
program administration and increased incentives budgets that are necessary to achieve higher levels of customer participation.

Table 6-8 shows that the achievable potential MWh savings by 2020 range from a low of 0.44\% in the $40 \%$ market penetration scenario to a high of $.88 \%$ in the $80 \%$ market penetration scenario. Table 6-8 also presents the total benefits and costs for the TRC Test in the $40 \%, 60 \%$, and $80 \%$ market penetration scenarios. The net present value benefits (benefits minus costs) range from approximately $\$ 23.3$ million in the $40 \%$ market penetration scenario to $\$ 40.2$ million in the $80 \%$ market penetration scenario.

Table 6-8: Benefit/Cost Ratios for all Market Penetration Scenarios Using the TRC Test (\$ in millions)

| Commercial Sector Cost Effectiveness Screening Results for Three Market Penetration Scenarios |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Market | MWh | \% of | MWh <br> Savings <br> $\mathbf{2 0 1 5}$ <br> Penetration <br> Scenario | \% of <br> $\mathbf{2 0 2 0}$ | Present Value <br> of Total <br> Benefits <br> (\$orecast | Present <br> Value of <br> Total Costs <br> (\$2013) | Benefit/ <br> Cost <br> Ratio |
| $40 \%$ Penetration | 54,080 | $0.18 \%$ | 144,214 | $0.44 \%$ | $\$ 71.9$ | $\$ 48.8$ | 1.48 |
| $60 \%$ Penetration | 81,120 | $0.27 \%$ | 216,321 | $0.66 \%$ | $\$ 107.9$ | $\$ 76.7$ | 1.41 |
| $80 \%$ Penetration | 108,160 | $0.35 \%$ | 288,427 | $0.88 \%$ | $\$ 143.9$ | $\$ 103.9$ | 1.39 |

Tables 6-9 to 6-11 provide detailed information on the projected annual MWh savings and required budgets for the three achievable potential scenarios based on $40 \%, 60 \%$ and 80 longterm market penetrations.

Table 6-9: Commercial Incremental and Cumulative Annual Fuel Switching Achievable Savings (80\% Market Penetration)

| Incremental Annual MWh Savings - Achievable 80\% |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| End-Use | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
| Space Heating | 26,726 | 26,726 | 26,726 | 26,726 | 26,726 | 26,726 | 26,726 | 26,726 | 26,726 | 26,726 |
| Water Heating | 9,327 | 9,327 | 9,327 | 9,327 | 9,327 | 9,327 | 9,327 | 9,327 | 9,327 | 9,327 |
| Total | 36,053 | 36,053 | 36,053 | 36,053 | 36,053 | 36,053 | 36,053 | 36,053 | 36,053 | 36,053 |
| \% of Annual Forecast Sales | 0.12\% | 0.12\% | 0.12\% | 0.12\% | 0.11\% | 0.11\% | 0.11\% | 0.11\% | 0.11\% | 0.11\% |
| Cumulative Annual MWh Savings - Achievable 80\% |  |  |  |  |  |  |  |  |  |  |
| End-Use | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
| Space Heating | 26,726 | 53,453 | 80,179 | 106,905 | 133,632 | 160,358 | 187,085 | 213,811 | 240,537 | 267,264 |
| Water Heating | 9,327 | 18,654 | 27,981 | 37,308 | 46,635 | 55,962 | 65,289 | 74,616 | 83,944 | 93,271 |
| Total | 36,053 | 72,107 | 108,160 | 144,214 | 180,267 | 216,321 | 252,374 | 288,427 | 324,481 | 360,534 |
| \% of Annual Forecast Sales | 0.12\% | 0.24\% | 0.35\% | 0.47\% | 0.57\% | 0.68\% | 0.78\% | 0.88\% | 0.97\% | 1.07\% |

Table 6-10: Commercial Incremental and Cumulative Annual Fuel Switching Achievable Savings (60\% Market Penetration)

| Incremental Annual MWh Savings - Achievable 60\% |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| End-Use | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
| Space Heating | 20,060 | 20,060 | 20,060 | 20,060 | 20,060 | 20,060 | 20,060 | 20,060 | 20,060 | 20,060 |
| Water Heating | 6,980 | 6,980 | 6,980 | 6,980 | 6,980 | 6,980 | 6,980 | 6,980 | 6,980 | 6,980 |
| Total | 27,040 | 27,040 | 27,040 | 27,040 | 27,040 | 27,040 | 27,040 | 27,040 | 27,040 | 27,040 |
| \% of Annual Forecast Sales | 0.09\% | 0.09\% | 0.09\% | 0.09\% | 0.09\% | 0.08\% | 0.08\% | 0.08\% | 0.08\% | 0.08\% |
| Cumulative Annual MWh Savings - Achievable 60\% |  |  |  |  |  |  |  |  |  |  |
| End-Use | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
| Space Heating | 20,060 | 40,119 | 60,179 | 80,239 | 100,299 | 120,358 | 140,418 | 160,478 | 180,537 | 200,597 |
| Water Heating | 6,980 | 13,961 | 20,941 | 27,921 | 34,902 | 41,882 | 48,863 | 55,843 | 62,823 | 69,804 |
| Total | 27,040 | 54,080 | 81,120 | 108,160 | 135,200 | 162,240 | 189,281 | 216,321 | 243,361 | 270,401 |
| \% of Annual Forecast Sales | 0.09\% | 0.18\% | 0.27\% | 0.35\% | 0.43\% | 0.51\% | 0.58\% | 0.66\% | 0.73\% | 0.80\% |

Table 6-11: Commercial Incremental and Cumulative Annual Fuel Switching Achievable Savings (40\% Market Penetration)

| Incremental Annual MWh Savings - Achievable 40\% |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| End-Use | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
| Space Heating | 13,373 | 13,373 | 13,373 | 13,373 | 13,373 | 13,373 | 13,373 | 13,373 | 13,373 | 13,373 |
| Water Heating | 4,654 | 4,654 | 4,654 | 4,654 | 4,654 | 4,654 | 4,654 | 4,654 | 4,654 | 4,654 |
| Total | 18,027 | 18,027 | 18,027 | 18,027 | 18,027 | 18,027 | 18,027 | 18,027 | 18,027 | 18,027 |
| \% of Annual Forecast Sales | 0.06\% | 0.06\% | 0.06\% | 0.06\% | 0.06\% | 0.06\% | 0.06\% | 0.05\% | 0.05\% | 0.05\% |
| Cumulative Annual MWh Savings - Achievable 40\% |  |  |  |  |  |  |  |  |  |  |
| End-Use | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
| Space Heating | 13,373 | 26,746 | 40,119 | 53,493 | 66,866 | 80,239 | 93,612 | 106,985 | 120,358 | 133,731 |
| Water Heating | 4,654 | 9,307 | 13,961 | 18,614 | 23,268 | 27,921 | 32,575 | 37,229 | 41,882 | 46,536 |
| Total | 18,027 | 36,053 | 54,080 | 72,107 | 90,134 | 108,160 | 126,187 | 144,214 | 162,240 | 180,267 |
| \% of Annual Forecast Sales | 0.06\% | 0.12\% | 0.18\% | 0.23\% | 0.29\% | 0.34\% | 0.39\% | 0.44\% | 0.49\% | 0.53\% |

### 7.0 Pros and Cons of Electric and Fossil Fuel Program Joint Delivery

As the State of MD considers the most cost effective approach to implementing enhance efficiency programs throughout the State, it is important to consider best practices and lessons learned from programs in other states. The question of whether gas and electric programs should be administered jointly is one issue that several states and utilities have attempted to address over the past several years, and one that the State of MD should take into account in the development of programs for 2014 and beyond.

Various types of combined electric/gas programs have emerged over the past several years and can be classified into three categories:

- Programs administered jointly through a single entity (state administered)
- Collaboration and integration of separately administered programs (utility programs)
- Isolated, separately administered programs

A recent study ${ }^{18}$ found that in states where combined electric-gas programs operate, they serve to cut total program costs through joint marketing and administration, simplify efficiency programs for customers, and, in most cases, increase market penetration and customer participation.

Table 7-1: Single Entity vs. Joint Program Delivery

| Single Entity | Collaboration of Separate Programs |
| :---: | :---: |
| Efficiency Vermont | Connecticut Utilities |
| New Jersey BPU | Massachusetts Utilities |
| Wisconsin Focus on Energy | - |
| Oregon Energy Trust | - |

The consensus from the report is that programs administered by a single entity are ideal in terms of maximizing energy efficiency impacts. However, collaboration of separate programs can still be successful as long as funding and cost attribution issues are resolved.

Massachusetts and Connecticut are the two examples from the report that warrant a closer look. While some Massachusetts efficiency programs are administered by combined electricgas utilities and Connecticut programs are jointly administered by separate electric and gas utilities, the two states are actually quite similar in the programs structures, and both states programs are extremely effective. In both states, the utilities have ceded some degree of ownership and control of program components, and have instead agreed to jointly select contracted vendors to deliver programs. Connecticut utilities have already contracted with one another and have come to agreements on respective portions of gas and electric costs and attributions ${ }^{19}$. Once those issues are resolved, the vendors take over and run the programs as if one entity is managing it.

[^12]For additional information on ways that electric and combination utilities are considering direct use of natural gas as a means to achieve electric demand side management (DSM) goals, please see Appendix D: Additional Fuel Switching Program.

## APPENDICES

## APPENDIX A

## Residential Sector Data

## APPENDIX A-1

## Residential Assumptions \& Sources



| Measure | Measure Name (Gas Equipment) | $\begin{array}{\|l\|l\|} \hline \text { Home } \\ \text { Type } \end{array}$ | R0B vs. Retrofit vs. NC | $\begin{array}{\|c} \hline \text { Baseline } \\ \text { Annual } \\ \text { Electric } \\ \mathrm{kWh} \\ \hline \end{array}$ | $\begin{array}{\|l\|} \% \mathrm{kWh} \\ \text { Savings } \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \text { Annual } \\ \text { kWh } \\ \text { Savings } \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \text { Per Unit } \\ \text { Winter } \\ \text { NCP kW } \\ \text { Savings } \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \text { Per Unit } \\ \text { Summer } \\ \text { NCP kW } \\ \text { Savings } \\ \hline \end{array}$ | Annual Gas <br> Consumption <br> (MMBTu) <br> added  <br>   | $\left.\begin{gathered} \text { Useful } \\ \text { Life } \end{gathered} \right\rvert\,$ | Incremental Cost (s)* | Measure/End Use Description | $\begin{array}{\|c\|} \text { Base } \\ \text { Saturation } \\ \hline \end{array}$ | $\begin{array}{\|c\|c\|} \hline \text { EE } \\ \text { Saturation } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 221 | High Efficiency Furnace ( 90 AFUE, 80K) | SFD | NC | 9906.6 | 80.1\% | 7939.8 | 11.25 | 0.00 | 61.88 | 18 | \$2,026.58 | Installing a high efficiency gas furnace (90 AFUE) in homes with an air-source heat pump | 12.01\% | 0.00\% |
| 222 | High Efficiency Furnace ( 92 AFUE, 80K) | SFD | NC | 9906.6 | 80.3\% | 7958.7 | 11.25 | 0.00 | 60.53 | 18 | \$2,180.42 | Installing a high efficiency gas furnace (92 AFUE) in homes with an air-source heat pump | 12.01\% | 0.00\% |
| 223 | High Efficiency Furnace ( 94 AFUE, 80K) | SFD | NC | 9906.6 | 80.5\% | 7977.2 | 11.25 | 0.00 | 59.23 | 18 | \$2,334.26 | Installing a high efficiency gas furnace (94 AFUE) in homes with an air-source heat pump | 12.01\% | 0.00\% |
| 224 | High Efficiency Furnace w/ECM ( 90 AFUE, 80 K ) ( $\mathrm{w} / 13$ SEER 3 Ton AC) | SFD | NC | 9906.6 | 81.3\% | 8051.0 | 11.35 | 0.00 | 61.88 | 18 | \$2,226.58 | Installing a high efficiency gas furnace ( 90 AFUE) with an efficient furnace fan motor in homes with an airsource heat pump | 12.01\% | 0.00\% |
| 225 | ( $w / 13$ SEER 3 Ton AC) <br> High Efficiency Furnace w/ ECM ( 92 AFUE, 80K) | SFD | NC | 9906.6 | 81.4\% | 8059.1 | 11.35 | 0.00 | 60.53 | 18 | \$2,380.42 | Installing a high efficiency gas furnace (92 AFUE) with an efficient furnace fan motor in homes with an air- source heat pump | 12.01\% | 0.00\% |
| 226 | High Efficiency Furnace w/ ECM ( 94 AFUE, 80K) | SFD | NC | 9906.6 | 81.4\% | 8066.9 | 11.35 | 0.00 | 59.23 | 18 | \$2,534.26 | source heat pump <br> Installing a high efficiency gas furnace ( 94 AFUE) with an efficient furnace fan motor in homes with an air- source | 12.01\% | 0.00\% |
| 227 | Duel Fuel Heat Pump ( 13 SEER ; 7.7 HSPF ; 3 Ton) / High Efficiency Gas Furnace ( 90 AFUE, 80 K ) | SFD | NC | 17797.5 | 76.6\% | 13631.2 | 5.48 | 0.00 | 29.64 | 18 | \$1,300.00 | Installing a high efficiency dual fuel heat pump ( 90 AFUE, 13 SEER/7.7 HSPF) in homes with a central electric furnace | 10.65\% | 0.00\% |
| 228 | Duel Fuel Heat Pump ( 13 SEER ; 7.7 HSPF ; 3 Ton) / High Efficiency Gas Furnace ( 90 AFUE, 80 K ) | SFD | NC | 9906.6 | 65.4\% | 6479.7 | 5.48 | 0.00 | 29.64 | 18 | \$1,300.00 | Installing a high efficiency dual fuel heat pump ( 90 AFUE, 13 SEER/7.7 HSPF) in homes with an air-source heat pump | 12.01\% | 0.00\% |
| 229 | High Efficiency Furnace ( 90 AFUE, 80K) | SFA | ROB | 10646.0 | 83.9\% | 8933.0 | 8.00 | 0.00 | 35.20 | 18 | \$2,477.50 | Installing a high efficiency gas furnace (90 AFUE) in homes with a central electric furnace | 21.60\% | 0.00\% |
| 230 | High Efficiency Furnace ( 92 AFUE, 80K) (w/ 13 SEER 3 Ton AC) | SFA | ROB | 10646.0 | 84.0\% | 8947.0 | 8.00 | 0.00 | 34.40 | 18 | \$2,631.34 | Installing a high efficiency gas furnace (92 AFUE) in homes with a central electric furnace | 21.60\% | 0.00\% |
| 231 | High Efficiency Furnace ( 94 AFUE, 80K) (w/ 13 SEER 3 Ton AC) | SFA | ROB | 10646.0 | 84.2\% | 8960.0 | 8.00 | 0.00 | 33.70 | 18 | \$2,785.18 | Installing a high efficiency gas furnace ( 94 AFUE) in homes with a central electric furnace | 21.60\% | 0.00\% |
| 232 | $\begin{aligned} & \text { High Efficiency Furnace w/ ECM }(90 \text { AFUE, } 80 \mathrm{~K}) \\ & \text { (w/ } \mathrm{w} \text { ) } \\ & \hline \end{aligned}$ | SFA | ROB | 10646.0 | 85.1\% | 9061.5 | 8.00 | 0.00 | 35.20 | 18 | \$2,677.50 | Installing a high efficiency gas furnace ( 90 AFUE) with an efficient furnace fan motor in homes with a central eleatric furnace | 21.60\% | 0.00\% |
| 233 | ( $\mathrm{w} / 13$ SEER 3 Ton AC) <br> High Efficiency Furnace w/ ECM ( 92 AFUE, 80K) | SFA | ROB | 10646.0 | 85.2\% | 9066.2 | 8.00 | 0.00 | 34.40 | 18 | \$2,831.34 | electric furnace <br> Installing a high efficiency gas furnace ( 92 AFUE) with an efficient furnace fan motor in homes with a central eleatric furnace | 21.60\% | 0.00\% |
| 234 | High Efficiency Furnace w/ ECM ( 94 AFUE, 80 K ) ( $\mathrm{w} / 13$ SEER 3 Ton AC) | SFA | ROB | 10646.0 | 85.2\% | 9070.4 | 8.00 | 0.00 | 33.70 | 18 | \$2,985.18 | Installing a high efficiency gas furnace ( 94 AFUE) with an efficient furnace fan motor in homes with a central electric furnace | 21.60\% | 0.00\% |
| 235 | High Efficien cy Furnace ( 90 AFUE, 80K) | SFA | ROB | 6300.0 | 72.8\% | 4587.0 | 8.00 | 0.00 | 35.20 | 18 | \$2,026.58 | Installing a high efficiency gas furnace ( 90 AFUE) in homes with an air-source heat pump | 16.50\% | 0.00\% |
| 236 | High Efficiency Furnace ( 92 AFUE, 80K) ( $\mathrm{w} / 13$ SEER 3 Ton AC) | SFA | ROB | 6300.0 | 73.0\% | 4601.0 | 8.00 | 0.00 | 34.40 | 18 | \$2,180.42 | Installing a high efficiency gas furnace (92 AFUE) in homes with an air-source heat pump | 16.50\% | 0.00\% |
| 237 | High Efficiency Furnace ( 94 AFUE, 80K) (w/ 13 SEER 3 Ton AC) | SFA | ROB | 6300.0 | 73.2\% | 4614.0 | 8.00 | 0.00 | 33.70 | 18 | \$2,334.26 | Installing a high efficiency gas furnace (94 AFUE) in homes with an air-source heat pump | 16.50\% | 0.00\% |
| 238 | $\begin{aligned} & \text { High Efficiency Furnace w/ECM }(90 \text { AFUE, } 80 \mathrm{~K}) \\ & \text { ( } w / 13 \text { SEER } 3 \text { Ton AC) } \end{aligned}$ | SFA | ROB | 6300.0 | 74.8\% | 4715.5 | 8.00 | 0.00 | 35.20 | 18 | \$2,226.58 | Installing a high efficiency gas furnace ( 90 AFUE) with an efficient furnace fan motor in homes with an airsource heat pump | 16.50\% | \% |
| 239 | $\begin{aligned} & \text { High Efficiency Furnace w/ECM }(92 \text { AFUE, } 80 \mathrm{~K}) \\ & \text { (w/ } 13 \text { SEER } 3 \text { Ton AC) } \end{aligned}$ | SFA | ROB | 6300.0 | 74.9\% | 4720 | 8.00 | 0.00 | 34.40 | 18 | \$2,380.42 | Installing a high efficiency gas furnace ( 92 AFUE) with an efficient furnace fan motor in homes with an airsource heat pump | 16.50\% | \%0\% |
| 240 | High Efficiency Furnace w/ ECM ( 94 AFUE, 80K) ( $w / 13$ SEER 3 Ton AC) | SFA | ROB | 6300.0 | 75.0\% | 4724.4 | 8.00 | 0.00 | 33.70 | 18 | \$2,534.26 | Installing a high efficiency gas furnace (94 AFUE) with an efficient furnace fan motor in homes with an air- source heat pump | 16.50\% | 0.00\% |
| 241 | Duel Fuel Heat Pump (13 SEER ; 7.7 HSPF ; 3 Ton) / High Efficiency Gas Furnace ( 90 AFUE, 80 K ) | SFA | ROB | 10646.0 | 72.1\% | 8.0 | 3.70 | 0.00 | 16.00 | 18 | \$1,300.00 | Installing a high efficiency dual fuel heat pump ( 90 AFUE, 13 SEER/7.7 HSPF) in homes with a central electric furnace | 21.60\% | 0.00\% |
| 242 | Duel Fuel Heat Pump (13 SEER ; 7.7 HSPF ; 3 Ton) / High Efficiency Gas Furnace ( 90 AFUE, 80 K ) | SFA | ROB | 6300.0 | 52.9\% | 2.0 | 3.70 | 0.00 | 16.00 | 18 | \$1,300.00 | Installing a high efficiency dual fuel heat pump ( 90 AFUE, 13 SEER/7.7 HSPF) in homes with an air-source heat pump | 16.50\% | 0.00\% |
| 243 | High Efficiency Furnace ( 90 AFUE, 80K) (w/ 13 SEER 3 Ton AC) | SFA | NC | 7344.0 | 83.4\% | 127.0 | 10 | . 00 | 24.10 | 18 | \$2,477.50 | Installing a high efficiency gas furnace ( 90 AFUE) in homes with a central electric furnace | 21.60\% | 0.00\% |
| 244 | High Efficiency Furnace ( 92 AFUE, 80K) (w/ 13 SEER 3 Ton AC | SFA | NC | 7344.0 | 83.6\% | 6136.0 | 5.10 | 0.00 | 23.50 | 18 | \$2,631.34 | Installing a high efficiency gas furnace (92 AFUE) in homes with a central electric furnace | 21.60\% | 0.0 |
| 245 | High Efficien cy Furnace ( 94 AFUE, 80K) ( $\mathrm{w} / 13$ SEER 3 Ton AC) | SFA | NC | 7344.0 | 83.7\% | 6144.0 | 5.10 | 0.00 | 23.00 | 18 | \$2,785.18 | Installing a high efficiency gas furnace ( 94 AFUE) in homes with a central electric furnace | 21.60\% | 0.00\% |
| 246 | ( $\mathrm{w} / 13$ SEER 3 Ton AC) <br> High Efficiency Furnace w/ ECM ( 90 AFUE, 80K) | SFA | NC | 7344.0 | 84.4\% | 6199.9 | 5.10 | 0.00 | 24.10 | 18 | \$2,677.50 | Installing a high efficiency gas furnace ( 90 AFUE) with an efficient furnace fan motor in homes with a central electric furnace | 21.60\% | 0.00\% |
| 247 | High Efficiency Furnace w/ ECM ( 92 AFUE, 80K) (w/ 13 SEER 3 Ton AC) | SFA | NC | 7344.0 | 84.5\% | 6203.4 | 5.10 | 0.00 | 23.50 | 18 | \$2,831.34 | Installing a high efficiency gas furnace ( 92 AFUE) with an efficient furnace fan motor in homes with a central electric furnace | 21.60\% | 0.00 |
| 248 | ( $w / 13$ SEER 3 Ton AC) <br> High Efficiency Furnace w/ ECM ( 94 AFUE, 80K) (w/ 1 SEER 3 Ton AC) | SFA | NC | 7344.0 | 84.5\% | 6206.4 | 5.10 | 0.00 | 23.00 | 18 | \$2,985.18 | Installing a high efficiency gas furnace ( 94 AFUE) with an efficient furnace fan motor in homes with a central electric furnace | 21.60\% | 0.00 |
| 249 | High Efficiency Furnace ( 90 AFUE, 80K) ( $\mathrm{w} / 13$ SEER 3 Ton AC) | SFA | NC | 4458.0 | 72.7\% | 3241.0 | 5.10 | 0.00 | 24.10 | 18 | \$2,026.58 | Installing a high efficiency gas furnace (90 AFUE) in homes with an air-source heat pump | 16.50\% | 0.00 |
| 250 | High Efficiency Furnace ( 92 AFUE, 80K) ( $w / 13$ SEER 3 Ton AC) | SFA | NC | 4458.0 | 72.9\% | 3250.0 | 5.10 | 0.00 | 23.50 | 18 | \$2,180.42 | Installing a high efficiency gas furnace (92 AFUE) in homes with an air-source heat pump | 16.50\% | 0.00 |
| 251 | High Efficien cy Furnace ( 94 AFUE, 80K) (w/ 13 SEER 3 Ton AC) | SFA | NC | 4458.0 | 73.1\% | 3258.0 | 5.10 | 0.00 | 23.00 | 18 | \$2,334.26 | Installing a high efficiency gas furnace (94 AFUE) in homes with an air-source heat pump | 16.50\% | 0.00 |
| 252 | High Efficiency Furnace w/ ECM ( 90 AFUE, 80 K ) (w/ 13 SEER 3 Ton AC) | SFA | NC | 4458.0 | 74.3\% | 3313.9 | 5.10 | 0.00 | 24.10 | 18 | \$2,226.58 | Installing a high efficiency gas furnace ( 90 AFUE) with an efficient furnace fan motor in homes with an air- source heat pump | 16.50\% | 0.00 |
| 253 | High Efficiency Furnace w/ECM ( 92 AFUE, 80 K ) ( $\mathrm{w} / 13$ SEER 3 Ton AC) | SFA | NC | 4458.0 | 74.4\% | 3317.4 | 5.10 | 0.00 | 23.50 | 18 | \$2,380.42 | Installing a high efficiency gas furnace (92 AFUE) with an efficient furnace fan motor in homes with an air- source heat pump | 16.50\% | 0.00\% |
| 254 | $\begin{aligned} & \text { High Efficiency Furnace w/ ECM }(94 \text { AFUE, } 80 \mathrm{~K}) \\ & \text { (w/ } \mathrm{w} \text { ) } \end{aligned}$ | SFA | NC | 4458.0 | 74.5\% | 3320.4 | 5.10 | 0.00 | 23.00 | 18 | \$2,534.26 | Installing a high efficiency gas furnace (94 AFUE) with an efficient furnace fan motor in homes with an air- source heat pump | 16.50\% | 0.00 |
| 255 | Duel Fuel Heat Pump (13 SEER ; 7.7 HSPF; 3 Ton) / High Efficiency Gas Furnace ( 90 AFUE, 80 K ) | SFA | NC | 7344.0 | 71.2\% | 5232.0 | 2.30 | 0.00 | 10.70 | 18 | \$1,300.00 | Installing a high efficiency dual fuel heat pump ( 90 AFUE, 13 SEER/7.7 HSPF) in homes with a central electric furnace | 21.60 | 0.00\% |
| 256 | Duel Fuel Heat Pump (13 SEER; 7.7 HSPF; 3 Ton) / High Efficiency Gas Furnace (90 AFUE, 80K) | SFA | NC | 4458.0 | 52.6\% | 2346.0 | 2.30 | 0.00 | 10.70 | 18 | \$1,300.00 | Installing a high efficiency dual fuel heat pump ( 90 AFUE, 13 SEER/7.7 HSPF) in homes with an air-source heat pump | 16.50\% | 0.00 |
| 257 | $\begin{aligned} & \text { High Efficiency Furnace ( } 90 \text { AFUE, } 60 \mathrm{~K} \text { ) } \\ & \text { (w/13 SEER 2 Ton AC) } \end{aligned}$ | MF | ROB | 5221.0 | 72.7\% | 3797.0 | 4.10 | 0.00 | 15.10 | 18 | \$2,585.46 | Installing a high efficiency gas furnace ( 90 AFUE ) in homes with a central electric furnace | 38.49\% | 0.00 |
| 258 | High Efficien cy Furnace ( 92 AFUE, 60 K ) (w/ 13 SEER 2 Ton AC) | MF | ROB | 5221.0 | 72.9\% | 3806.0 | 4.10 | 0.00 | 14.70 | 18 | \$2,739.30 | Installing a high efficiency gas furnace ( 92 AFUE) in homes with a central electric furnace | 38.49\% | 0.00 |
| 259 | $\begin{aligned} & \text { High Efficiency Furnace }(94 \text { AFUE, } 60 \mathrm{~K}) \\ & (\mathrm{w} / 13 \text { SEER } 2 \text { Ton AC) } \end{aligned}$ | MF | ROB | 5221.0 | 73.1\% | 3815.0 | 4.10 | 0.00 | 14.40 | 18 | \$2,893.14 | Installing a high efficiency gas furnace (94 AFUE) in homes with a central electric furnace | 38.49\% | 0.00\% |



| Measure | Measure Name (Gas Equipment) | $\begin{array}{\|l} \text { Home } \\ \text { Type } \end{array}$ | ROB vs. <br> Retrofit vs. <br> NC | $\begin{gathered} \hline \text { Baseline } \\ \text { Annual } \\ \text { Electric } \\ \quad \mathrm{kWh} \\ \hline \end{gathered}$ | $\begin{gathered} \text { Annual } \\ \mathrm{kWh} \\ \text { Savings } \\ \hline \end{gathered}$ | Per Unit Winter $\qquad$ NCP kW Savings |  | Annual Gas Consumptio (MMBTu) added | Useful Life | Incremental Cost (\$) | $\begin{gathered} \text { Base } \\ \text { Saturation } \\ \hline \end{gathered}$ | $\begin{array}{c\|} \text { EE } \\ \text { Saturation* } \\ \hline \end{array}$ | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 101 | High Efficiency Gas Tank WH (0.67 EF) | SFD | ROB | GDS calc. | GDS calc. | PATRM | PATRM | GDS calc. | MID-ATL-TRM | NREL | KEMA | GDS estimate | Baseline $\mathrm{kWh} /$ Annual kWh : calculations based on standard water heating energy usage algorithms; parameter estimates are based on Maryland climate; Cost: Estimate includes $\$ 300$ for venting |
| 102 | High Efficiency Gas Tank WH ( 0.80 EF ) | SFD | ROB | GDS calc. | GDS calc. | PATRM | PATRM | GDS calc. | MID-ATL-TRM | NREL/ /ES | KEMA | GDS estimate | Baseline $\mathrm{kWh} /$ Annual kWh : calculations based on standard water heating energy usage algorithms; parameter estimates are based on Maryland climate; Cost: Baseline cost from NREL; EE cost from ES RWH; estimate includes $\$ 300$ for venting |
| 103 | High Efficiency Tankless WH ( 0.82 EF ) | SFD | ROB | GDS calc. | GDS calc. | PATRM | PATRM | GDS calc. | MID-ATL-TRM | NREL | KEMA | GDS estimate | Baseline $\mathrm{kWh} /$ Annual kWh : calculations based on standard water heating energy usage algorithms; parameter estimates are based on Maryland climate; Cost: Estimate includes $\$ 300$ for venting |
| 104 | High Efficiency Tankless WH ( 0.82 EF ) | SFD | ROB | GDS calc. | GDS calc. | PATRM | PATRM | GDS calc. | MID-ATL-TRM | NREL / GEP | KEmA | GDS estimate | Baseline kWh / Annual kWh : calculations based on standard water heating energy usage algorithms; parameter estimates are based on Maryland climate; Cost: Baseline cost from GEP; EE cost from NREL; estimate includes \$300 for venting |
| 105 | High Efficiency Gas Tank WH (0.67 EF) | SFD | NC | GDS calc. | GDS calc. | PATRM | PATRM | GDS calc. | MID-ATL-TRM | NREL | KEmA | GDS estimate | Baseline kWh / Annual kWh: calculations based on standard water heating energy usage algorithms; parameter estimates are based on Maryland climate; Cost: Estimate includes $\$ 300$ for venting |
| 106 | High Efficiency Gas Tank WH ( 0.80 EF ) | SFD | NC | GDS calc. | GDS calc. | PATRM | PATRM | GDS calc. | MID-ATL-TRM | NREL / ES RWH | KEMA | GDS estimate | Baseline kWh / Annual kWh : calculations based on standard water heating energy usage algorithms; parameter estimates are based on Maryland climate; Cost: Baseline cost from NREL; EE cost from ES RWH; estimate includes \$300 for venting |
| 107 | High Efficiency Tankless WH ( 0.82 EF ) | SFD | NC | GDS calc. | GDS calc. | PATRM | PATRM | GDS calc. | MID-ATL-TRM | NREL | KEMA | GDS estimate | Baseline $\mathrm{kWh} /$ Annual kWh : calculations based on standard water heating energy usage algorithms; parameter estimates are based on Maryland climate; Cost: Estimate includes $\$ 300$ for venting |
| 108 | High Efficiency Tankless WH ( 0.82 EF ) | SFD | NC | GDS calc. | GDS calc. | PATRM | PATRM | GDS calc. | MID-ATL-TRM | NREL / GEP | KEMA | GDS estimate | Baseline $\mathrm{kWh} /$ Annual kWh : calculations based on standard water heating energy usage algorithms; parameter estimates are based on Maryland climate; Cost: Baseline cost from GEP; EE cost from NREL; estimate includes $\$ 300$ for venting |
| 109 | High Efficiency Gas Tank WH (0.67 EF) | SFA | ROB | GDS calc. | GDS calc. | PATRM | PATRM | GDS calc. | MID-ATL-TRM | NREL | KEMA | GDS estimate | Baseline $\mathrm{kWh} /$ Annual kWh : calculations based on standard water heating energy usage algorithms; parameter estimates are based on Maryland climate; Cost: Estimate includes $\$ 300$ for venting |
| 110 | High Efficiency Gas Tank WH ( 0.80 EF ) | SFA | ROB | GDS calc. | GDS calc. | PATRM | PATRM | GDS calc. | MID-ATL-TRM | $\underset{\text { RWH }}{\substack{\text { NREL } / \text { ES }}}$ | KEMA | GDS estimate | Baseline $\mathrm{kWh} /$ Annual kWh : calculations based on standard water heating energy usage algorithms; parameter estimates are based on Maryland climate; Cost: Baseline cost from NREL; EE cost from ES RWH; estimate includes $\$ 300$ for venting |
| 111 | High Efficiency Tankless WH ( 0.82 EF ) | SFA | ROB | GDS calc. | GDS calc. | PATRM | PATRM | GDS calc. | MID-ATL-TRM | NREL | KEMA | GDS estimate | Baseline kWh / Annual kWh : calculations based on standard water heating energy usage algorithms; parameter estimates are based on Maryland climate; Cost: Estimate includes $\$ 300$ for venting |
| 112 | High Efficiency Tankless WH ( 0.82 EF ) | SFA | ROB | GDS calc. | GDS calc. | PATRM | PATRM | GDS calc. | MID-ATL-TRM | NREL / GEP | KEMA | GDS estimate | Baseline kWh / Annual kWh : calculations based on standard water heating energy usage algorithms; parameter estimates are based on Maryland climate; Cost: Baseline cost from GEP; EE cost from NREL; estimate includes $\$ 300$ for venting |
| 113 | High Efficiency Gas Tank WH (0.67 EF) | SFA | NC | GDS calc. | GDS calc. | PATRM | PATRM | GDS calc. | MID-ATL-TRM | NREL | кеma | GDS estimate | Baseline kWh / Annual kWh : calculations based on standard water heating energy usage algorithms; parameter estimates are based on Maryland climate; Cost: Estimate includes $\$ 300$ for venting |
| 114 | High Efficiency Gas Tank WH ( 0.80 EF ) | SFA | NC | GDS calc. | GDS calc. | PATRM | PATRM | GDS calc. | MID-ATL-TRM | $\underset{\substack{\text { NREL / } \\ \text { RWH }}}{ }$ | кемA | GDS estimate | Baseline kWh / Annual kWh: calculations based on standard water heating energy usage algorithms; parameter estimates are based on Maryland climate; Cost: Baseline cost from NREL; EE cost from ES RWH; estimate includes \$300 for venting |
| 115 | High Efficiency Tankless WH ( 0.82 EF ) | SFA | NC | GDS calc. | GDS calc. | PATRM | PATRM | GDS calc. | MID-ATL-TRM | NREL | KEMA | GDS estimate | Baseline $\mathrm{kWh} /$ Annual kWh : calculations based on standard water heating energy usage algorithms; parameter estimates are based on Maryland climate; Cost: Estimate includes $\$ 300$ for venting |
| 116 | High Efficiency Tankless WH ( 0.82 EF ) | SFA | NC | GDS calc. | GDS calc. | PATRM | PATRM | GDS calc. | MID-ATL-TRM | NREL / GEP | KEMA | GDS estimate | Baseline $\mathrm{kWh} /$ Annual kWh : calculations based on standard water heating energy usage algorithms; parameter estimates are based on Maryland climate; Cost: Baseline cost from GEP; EE cost from NREL; estimate includes $\$ 300$ for venting |
| 117 | High Efficiency Gas Tank WH (0.67 EF) | mF | ROB | GDS calc. | GDS calc. | PATRM | PATRM | GDS calc. | MID-ATL-TRM | NREL | KEMA | GDS estimate | Baseline $\mathrm{kWh} /$ Annual kWh : calculations based on standard water heating energy usage algorithms; parameter estimates are based on Maryland climate; Cost: Estimate includes $\$ 300$ for venting |
| 118 | High Efficiency Gas Tank WH ( 0.80 EF ) | MF | ROB | GDS calc. | GDS calc. | PATRM | PATRM | GDS calc. | MID-ATL-TRM | $\underset{\text { RWH }}{\substack{\text { NREL / ES }}}$ | KEMA | GDS estimate | Baseline kWh / Annual kWh : calculations based on standard water heating energy usage algorithms; parameter estimates are based on Maryland climate; Cost: Baseline cost from NREL; EE cost from ES RWH; estimate includes $\$ 300$ for venting |
| 119 | High Efficiency Tankless WH ( 0.82 EF ) | MF | ROB | GDS calc. | GDS calc. | PATRM | PATRM | GDS calc. | MID-ATL-TRM | NREL | KEMA | GDS estimate | Baseline $\mathrm{kWh} /$ Annual kWh : calculations based on standard water heating energy usage algorithms; parameter estimates are based on Maryland climate; Cost: Estimate includes $\$ 300$ for venting |
| 120 | High Efficiency Tankless WH ( 0.82 EF ) | MF | ROB | GDS calc. | GDS calc. | PATRM | PATRM | GDS calc. | MID-ATL-TRM | NREL / GEP | KEmA | GDS estimate | Baseline kWh / Annual kWh : calculations based on standard water heating energy usage algorithms; parameter estimates are based on Maryland climate; Cost: Baseline cost from GEP; EE cost from NREL; estimate includes $\$ 300$ for venting |
| 121 | High Efficiency Gas Tank WH (0.67 EF) | MF | NC | GDS calc. | GDS calc. | PATRM | PATRM | GDS calc. | MID-ATL-TRM | NREL | KEMA | GDS estimate | Baseline $\mathrm{kWh} /$ Annual kWh : calculations based on standard water heating energy usage algorithms; parameter estimates are based on Maryland climate; Cost: Estimate includes $\$ 300$ for venting |


| Measure | Measure Name (Gas Equipment) | Home Type | $\begin{gathered} \text { ROB vs. } \\ \text { Retrofit vs. } \\ \text { NC } \end{gathered}$ | $\begin{aligned} & \hline \text { Baseline } \\ & \text { Anual } \\ & \text { Electric } \\ & \mathrm{kWh} \end{aligned}$ | kWh <br> Savings | Per Unit winter NCP kW Savings | Per Unit Summer NCP kW Savings | Annual Gas Consumption (MMBTu) added | Useful Life | Incremental Cost (s) | Base <br> Saturation | EE Saturation* | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 122 | High Efficiency Gas Tank WH ( 0.80 EF) | MF | NC | GDS calc. | GDS calc. | PATRM | PATRM | GDS calc. | MID-ATL-TRM | $\underset{\substack{\text { NREL } / \text { ES } \\ \text { RWH }}}{ }$ | KEMA | GDS estimate | Baseline $\mathrm{kWh} /$ Annual kWh : calculations based on standard water heating energy usage algorithms; parameter estimates are based on Maryland climate; Cost: Baseline cost from NREL; EE cost from ES RWH; estimate includes $\$ 300$ for venting |
| 123 | High Efficiency Tankless WH ( 0.82 EF ) | MF | NC | GDS calc. | GDS calc. | PATRM | PATRM | GDS calc. | MID-ATL-TRM | NREL | KEMA | GDS estimate | Baseline kWh / Annual kWh : calculations based on standard water heating energy usage algorithms; parameter estimates are based on Maryland climate; Cost: Estimate includes $\$ 300$ for venting |
| 124 | High Efficiency Tankless WH (0.82 EF) | MF | NC | GDS calc. | GDS calc. | PATRM | TRM | GDS calc. | MID-ATL-TRM | NREL / GEP | KEMA | GDS estimate | Baseline kWh / Annual kWh : calculations based on standard water heating energy usage algorithms; parameter estimates are based on Maryland climate; Cost: Baseline cost from GEP; EE cost from NREL; estimate includes $\$ 300$ for venting |
| 200 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 201 | High Efficiency Furnace ( 90 AFUE, 80K) ( $\mathrm{w} / 13$ SEER 3 Ton AC) | SFD | ROB | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 202 | High Efficiency Furnace ( 92 AFUE, 80 K )(w/13 SEER 3 Ton AC) | SFD | ROB | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 203 | High Efficiency Furnace ( 94 AFUE, 80 K )( $\mathrm{w} / 13$ SEER 3 Ton AC) | SFD | ROB | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 204 | High Efficiency Furnace w/ECM ( 90 AFUE, 80K)( $w / 13$ SEER 3 To | SFD | ROB | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 205 | High Efficiency Furnace w/ECM ( 92 AFUE, 80 K )(w/ 13 SEER 3 To | SFD | ROB | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 206 | High Efficiency Furnace w/ECM ( 94 AFUE, 80 K )(w/ 13 SEER 3 To | SFD | ROB | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 207 | High Efficiency Furnace ( 90 AFUE, 80 K )( $\mathrm{w} / 13$ SEER 3 Ton AC) | SFD | ROB | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 208 | High Efficiency Furnace ( 92 AFUE, 80 K )( $w / 13$ SEER 3 Ton AC) | SFD | ROB | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 209 | High Efficiency Furnace ( 944 AFUE, 80 K )( $\mathrm{w} / 13$ SEER 3 Ton AC) | SFD | ROB | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 210 | High Efficiency Furnace w/ECM ( 90 AFUE, 80K)( $w / 13$ SEER 3 To | SFD | ROB | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes \$300 for venting |
| 211 | High Efficiency Furnace w/ECM ( 92 AFUE, 80K)(w/13 SEER 3 To | SFD | ROB | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 212 | High Efficiency Furnace w/ECM ( 94 AFUE, 80 K )(w/ 13 SEER 3 To | SFD | ROB | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 213 | Duel Fuel Heat Pump ( 13 SEER ; 7.7 HSPF ; 3 Ton)/High Efficiencs, | SFD | ROB | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | GDS MLR | GDS estimate | EMA | GDS estimate | Cost: GDS research found several websites suggesting $\$ 1,000$ cost; estimate includes $\$ 300$ for venting |
| 214 | Duel Fuel Heat Pump (13 SEER ; 7.7 HSPF ; 3 Ton)/High Efficiencs) | SFD | ROB | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | GDS MLR | GDS estimate | KEMA | GDS estimate | Cost: GDS research found several websites suggesting $\$ 1,000$ cost; estimate includes $\$ 300$ for venting |
| 215 | High Efficiency Furnace ( 90 AFUE, 80 K )( $\mathrm{w} / 13$ SEER 3 Ton AC) | SFD | NC | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 216 | High Efficiency Furnace (92 AFUE, 80 K )(w/13 SEER 3 Ton AC) | SFD | NC | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 217 | High Efficiency Furnace ( 94 AFUE, 80 K )( $\mathrm{w} / 13$ SEER 3 Ton AC) | SFD | NC | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 218 | High Efficiency Furnace w/ECM ( 90 AFUE, 80K)( $\mathrm{w} / 13$ SEER 3 To | SFD | NC | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 219 | High Efficiency Furnace w/ECM ( 92 AFUE, 80K)(w/13 SEER 3 To | SFD | NC | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 220 | High Efficiency Furnace w/ECM ( 94 AFUE, 80K)(w/ 13 SEER 3 To | SFD | NC | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 221 | High Efficiency Furnace ( 90 AFUE, 80K) ( $\mathrm{w} / 13$ SEER 3 Ton AC) | SFD | NC | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 222 | High Efficiency Furnace (92 AFUE, 80K) ( $w / 13$ SEER 3 Ton AC) | SFD | NC | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 223 | High Efficiency Furnace (94 AFUE, 80K) ( $w / 13$ SEER 3 Ton AC) | SFD | NC | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 224 | High Efficiency Furnace w/ECM ( 90 AFUE, 80 K )( $\mathrm{w} / 13$ SEER 3 To | SFD | NC | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 225 | High Efficiency Furnace w/ECM ( 92 AFUE, 80 K )( $\mathrm{w} / 13$ SEER 3 To | SFD | NC | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 226 | High Efficiency Furnace w/ECM ( 94 AFUE, 80K)(w/ 13 SEER 3 To | SFD | NC | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 227 | Duel Fuel Heat Pump ( 13 SEER ; 7.7 HSPF; 3 Ton)/High Efficiencs | SFD | NC | Rem/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | GDS M | GDS estimate | KEM | GDS estimate | Cost: GDS research found several websites suggesting $\$ 1,000$ cost; estimate includes $\$ 300$ for venting |
| 228 | Duel Fuel Heat Pump ( 13 SEER ; 7.7 HSPF ; 3 Ton) /High Efficiencs | SFD | NC | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | GDS MLR | GDS estimate | KEmA | GDS estimate | Cost: GDS research found several websites suggesting $\$ 1,000$ cost; estimate includes $\$ 300$ for venting |
| 229 | High Efficiency Furnace (90 AFUE, 80 K )(w/13 SEER 3 Ton AC) | SFA | ROB | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes \$300 for venting |
| 230 | High Efficiency Furnace (92 AFUE, 80K) (w/13 SEER 3 Ton AC) | SFA | ROB | REM/Rate | Rem/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 231 | High Efficiency Furnace ( 94 AFUE, 80K) ( $\mathrm{w} / 13$ SEER 3 Ton AC) | SFA | ROB | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 232 | High Efficiency Furnace w/ECM ( 90 AFUE, 80K)( $\mathrm{w} / 13$ SEER 3 To | SFA | ROB | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 233 | High Efficiency Furnace w/ECM ( 92 AFUE, 80 K )( $\mathrm{w} / 13$ SEER 3 To | SFA | ROB | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 234 | High Efficiency Furnace w/ECM ( 94 AFUE, 80 K )(w/ 13 SEER 3 To | SFA | ROB | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 235 | High Efficiency Furnace ( 90 AFUE, 80 K ) ( $\mathbf{w} / 13$ SEER 3 Ton AC) | SFA | ROB | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 236 | High Efficiency Furnace (92 AFUE, 80 K ) ( $\mathrm{w} / 13$ SEER 3 Ton AC) | SFA | ROB | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 237 | High Efficiency Furnace ( 94 AFUE, 80K) ( $\mathrm{w} / 13$ SEER 3 Ton AC) | SFA | ROB | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 238 | High Efficiency Furnace w/ECM (90 AFUE, 80 K ) ( $\mathrm{w} / 13$ SEER 3 To | SFA | ROB | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 239 | High Efficiency Furnace w/ECM ( 92 AFUE, 80K)(w/13 SEER 3 To | SFA | ROB | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 240 | High Efficiency Furnace w/ECM ( 94 AFUE, 80 K )(w/ 13 SEER 3 To | SFA | ROB | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 241 | Duel Fuel Heat Pump (13 SEER ; 7.7 HSPF ; 3 Ton)/High Efficiencs) | SFA | ROB | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | GDS MLR | GDS estimate | KEMA | GDS estimate | Cost: GDS research found several websites suggesting $\$ 1,000$ cost; estimate includes $\$ 300$ for venting |
| 242 | Duel Fuel Heat Pump (13 SEER ; 7.7 HSPF ; 3 Ton)/High Efficiencs) | SFA | ROB | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | GDS MLR | GDS estimate | KEMA | GDS estimate | Cost: GDS research found several websites suggesting $\$ 1,000$ cost; estimate includes $\$ 300$ for venting |
| 243 | High Efficiency Furnace ( 90 AFUE, 80K) ( $\mathrm{w} / 13$ SEER 3 Ton AC) | SFA | NC | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 244 | High Efficiency Furnace ( 92 AFUE, 80 K )(w/13 SEER 3 Ton AC) | SFA | NC | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 245 | High Efficiency Furnace ( 944 AFUE, 80 K ) ( $\mathrm{w} / 13$ SEER 3 Ton AC) | SFA | NC | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 246 | High Efficiency Furnace w/ECM ( 90 AFUE, 80 K )(w/ 13 SEER 3 To | SFA | NC | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 247 | High Efficiency Furnace w/ECM ( 92 AFUE, 80K)(w/ 13 SEER 3 To | SFA | NC | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 248 | High Efficiency Furnace w/ECM ( 94 AFUE, 80K)(w/ 13 SEER 3 To | SFA | NC | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 249 | High Efficiency Furnace ( 90 AFUE, 80 K )( $\mathrm{w} / 13$ SEER 3 Ton AC) | SFA | NC | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 250 | High Efficiency Furnace (92 AFUE, 80K) (w/13 SEER 3 Ton AC) | SFA | NC | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 251 | High Efficiency Furnace (94 AFUE, 80K) ( $w / 13$ SEER 3 Ton AC) | SFA | NC | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 252 | High Efficiency Furnace w/ECM ( 90 AFUE, 80K) ( $\mathrm{w} / 13$ SEER 3 To | SFA | NC | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 253 | High Efficiency Furnace w/ECM ( 92 AFUE, 80K)(w/ 13 SEER 3 To | SFA | NC | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 254 | High Efficiency Furnace w/ECM ( 94 AFUE, 80 K )(w/ 13 SEER 3 To | SFA | NC | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 255 | el Fuel Heat Pump ( 13 SEER ; 7.7 HSPF ; 3 Ton)/High Efficienc) | SFA | NC | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | GDS MLR | GDS estimate | KEmA | GDS estimate | Cost: GDS research found several websites suggesting $\$ 1,000$ cost; estimate includes $\$ 300$ for venting |
| 256 | el Fuel Heat Pump ( 13 SEER ; 7.7 HSPF ; 3 Ton) /High Efficienc) | SFA | NC | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | GDS MLR | GDS estimate | KEMA | GDS estimate | Cost: GDS research found several websites suggesting $\$ 1,000$ cost; estimate includes $\$ 300$ for venting |
| 257 | High Efficiency Furnace ( 90 AFUE, 60 K )( $\mathrm{w} / 13$ SEER 2 Ton AC) | MF | ROB | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |
| 258 | High Efficiency Furnace ( 92 AFUE, 60 K )(w/ 13 SEER 2 Ton AC) | MF | ROB | REM/Rate | REM/Rate | REM/Rate | REM/Rate | REM/Rate | MID-ATL-TRM | NEEP 2011 | KEMA | GDS estimate | Cost: Estimate includes $\$ 300$ for venting |



## ECOVA: report titled, "What Lurks Beneath: Energy Savings Opportunities from Better Testing and Technologies in Residential Clothes Dryers", presented at 2012 ACEEE Summer Study conference




PA TRM: Pennsylvania Technical Reference Manual, p. 20, June 2012.
REM/Rate: Building Energy Modeling Software. Prototype homes were modeled based on average characterstics using the KEMA Maryland Energy Baseline Study

APPENDIX A-2
Residential Potential Data



| Measure | Measure Name | $\begin{array}{\|l} \text { Home } \\ \text { Type } \end{array}$ | ROB vs. Retrofit | $\begin{gathered} \text { Per Unit Annual } \\ \text { Electricity (kWh) } \\ \text { Savings } \end{gathered}$ | Achievable Participants per Year (Based on 60\% Market Penetration Scenario) |  |  |  |  |  |  |  |  |  | $\begin{array}{\|l} \text { Achievable } \\ \hline \text { Electricity }(\mathrm{kWh}) \\ \hline \text { Savings by } 2015 \\ \hline \end{array}$ | $\begin{gathered} \text { Achievable } \\ \text { Electricity (kWh) } \\ \text { Savings by } 2020 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Achievable } \\ \text { Summer kW } \\ \text { Savings by } 2015 \\ \hline \end{gathered}$ | $\begin{gathered} \text { Achievable } \\ \text { Summer kW } \\ \text { Savings by } 2020 \\ \hline \end{gathered}$ | Additional Gas(MMBTu)Consumption by2015 | $\begin{gathered} \text { Additional Gas } \\ \text { (MMBTu) } \\ \text { Consumption by } \\ 2020 \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |  |  |  |  |  |  |
| 268 | High Efficiency Furnace w/ ECM ( 94 AFUE, 60K) (w/ 13 SEER 2 Ton AC) | MF | ROB | 2,324 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 269 | Duel Fuel Heat Pump (13 SEER ; 7.7 HSPF; 2 Ton) / High Efficiency Gas Furnace ( 90 AFUE, 60K) | MF | ROB | 3,257 | 128 | 256 | 384 | 511 | 640 | 768 | 895 | 1,023 | 1,023 | 1,023 | 2,501,376 | 14,998,485 | 0 | 0 | 4,992 | 29,933 |
| 270 | Duel Fuel Heat Pump ( 13 SEER ; 7.7 HSPF; 2 Ton) / High Efficiency Gas Furnace ( 90 AFUE, 60K) | MF | ROB | 1,697 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 271 | $\begin{aligned} & \begin{array}{l} \text { High Efficiency Furnace ( } 90 \text { AFUE, } 60 \mathrm{~K} \text { ) } \\ \text { (w/ } 13 \text { SEER 2 Ton AC) } \end{array} \\ & \hline \end{aligned}$ | MF | NC | 1,824 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 272 | High Efficiency Furnace ( 92 AFUE, 60 K ) ( $\mathrm{w} / 13$ SEER 2 Ton AC) | MF | NC | 1,829 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 273 | High Efficiency Furnace ( 94 AFUE, 60K) ( $\mathrm{w} / 13$ SEER 2 Ton AC) | MF | NC | 1,834 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 274 | $\begin{aligned} & \text { High Efficiency Furnace w/ECM }(90 \text { AFUE, } 60 \mathrm{~K}) \\ & \text { (w/13 SEER } 2 \text { Ton AC) } \end{aligned}$ | MF | NC | 1,873 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 275 | High Efficiency Furnace w/ ECM ( 92 AFUE, 60K) (w/ 13 SEER 2 Ton AC) | MF | NC | 1,875 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 276 | $\begin{aligned} & \text { High Efficiency Furnace w/ ECM ( } 94 \text { AFUE, } 60 \mathrm{~K}) \\ & \text { (w/13 SEER } 2 \text { Ton AC) } \end{aligned}$ | MF | NC | 1,875 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 277 | $\begin{aligned} & \text { High Efficiency Furnace ( } 90 \text { AFUE, } 60 \mathrm{~K} \text { ) } \\ & \text { (w/13 SEER 2 Ton AC) } \end{aligned}$ | MF | NC | 1,348 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 278 | $\begin{aligned} & \text { High Efficiency Furnace ( } 92 \text { AFUE, } 60 \mathrm{~K}) \\ & \text { (w/13 SEER } 2 \text { Ton AC) } \\ & \hline \end{aligned}$ | MF | NC | 1,353 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 279 | High Efficiency Furnace ( 94 AFUE, 60 K ) (w/13 SEER 2 Ton AC) | MF | NC | 1,358 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 280 | High Efficiency Furnace w/ ECM ( 90 AFUE, 60 K ) (w/13 SEER 2 Ton AC) | MF | NC | 1,397 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 281 | $\begin{aligned} & \text { High Efficiency Furnace w/ ECM }(92 \text { AFUE, } 60 \mathrm{~K}) \\ & \text { (w/13 SEER } 2 \text { Ton AC) } \end{aligned}$ | MF | NC | 1,399 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 282 | High Efficiency Furnace w/ ECM ( 94 AFUE, 60K) (w/ 13 SEER 2 Ton AC) | MF | NC | 1,399 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 283 | Duel Fuel Heat Pump ( 13 SEER ; 7.7 HSPF; 2 Ton) / High Efficiency Gas Furnace ( 90 AFUE, 60K) | MF | NC | 1,562 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 284 | Duel Fuel Heat Pump ( 13 SEER ; 7.7 HSPF; 2 Ton) / High Efficiency Gas Furnace ( 90 AFUE, 60K) | MF | NC | 1,086 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 300 | Gas Dryer |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 301 302 | $\frac{\text { Gas clothes dryer }}{\text { Gas cothes dryer }}$ | $\frac{\text { SFD }}{\text { SFD }}$ | $\frac{\mathrm{ROB}}{\mathrm{NC}}$ | 900 | $\frac{2,190}{306}$ | $\frac{4,379}{614}$ | $\frac{6,568}{920}$ | $\frac{8,757}{1,228}$ | $\frac{10,947}{1,534}$ | $\frac{13,136}{1,842}$ | $\frac{15,325}{2,148}$ | $\stackrel{17,515}{2,455}$ | $\frac{17,515}{2,455}$ | $\stackrel{17,515}{2,455}$ | $11,823,300$ | 70,935,300 | $\frac{6,024}{884}$ | $\frac{36,143}{5,066}$ | $\frac{39,411}{5,520}$ | 236,451 |
| 303 | Gas clothes dryer | SFA | ROB | 900 | 895 | 1,791 | 2,686 | 3.582 | 4,477 | 5,372 | 6,268 | 7,164 | 7,164 | 7,164 | 4,834,800 | 29,011,500 | 2,463 | 14,782 | 16,116 | 96,705 |
| 304 | Gas clothes dryer | SFA | NC | 900 | 125 | 251 | 377 | 502 | 627 | 753 | 879 | 1,004 | 1,004 | 1,004 | 677,700 | 4,066,200 | 345 | 2,072 | 2,259 | 13,554 |
| 305 | Gas clothes dryer | MF | ROB | 900 | 653 | 1,308 | 1,961 | 2,616 | 3,269 | 3,923 | 4,577 | 5,231 | 5,231 | 5,231 | 3,529,800 | 21,184,200 | 1,799 | 10,794 | 11,766 | 70,614 |
| 306 | Gas clothes dryer | MF | NC | 900 | 91 | 183 | 275 | 367 | 458 | 550 | 641 | 734 | 734 | 734 | 494,100 | 2,969,100 | 252 | 1,513 | 1,647 | 9,897 |

## APPENDIX B <br> Commercial Sector Data

## APPENDIX B-1

## Commercial Assumptions \& Sources

| MEA Fuel Switching Study- August 12 - Commercial Measure Database |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | Cost Type: <br> 1=Full <br> 2=Inc. | End Use | Measure Name | Annual kWh Savings | $\begin{aligned} & \text { kWh } \\ & \text { Savings } \\ & \text { Source } \end{aligned}$ | $\left.\begin{array}{\|c\|} \hline \text { Per Unit Wnter } \\ \text { NCP KW } \\ \text { Savings } \end{array} \right\rvert\,$ | Per Unit Summer NCP kWSavings | Ammal nmbiu savings | MMBtu <br> savings <br> source | Incremental Cost | Cost Source |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 101 | 2 | Water Heating | On-Demand, Tankess Water Heater (40 gallon, 40,000Btuh) | 6,748 | 1 | 21 | 14 | (25.27) | 1 | \$1,954 | 7 |
| 102 | 2 | Water Heating | On-Demend, Tanksess Water Heater riidn Efficercy (40 gallon, 40,000Buhn) | 7,827 | 1 | 25 | 1.6 | (25.30) | 1 | \$2,129 | 8 |
| 103 | 2 | Water Heating | O-Demand, Tankess Water Heater (2 Units, 314,000BUh) | 20,986 | 2 | 9.4 | 6.2 | (108.00) | 2 | \$5,509 | 9 |
| 104 | 2 | Water Heating | High Efficiency Stand Alone Commercial Water Heater (Baseline <=75000 Btu) | 5,501 | 1 | 17 | 1.1 | (25.21) | 1 | \$1, 090 | 10 |
| 105 | 2 | Water Heating | Condensing Stand Aone Cormercial Water Heater (Baseline $>75000$ but) | 33,837 | 2 | 10.6 | 7.1 | (108.23) | 2 | \$16,52 | 11 |
| 106 | 2 | Water Heating | Indirect Water Heater - Conbined appliance efficiency rating (CAE) $>=85 \%$ | 28,870 | 2 | 9.1 | 6.0 | (108.11) | 2 | 98,434 | 12 |
| 150 |  |  | Spare Hatino- Eecticic Boilers |  |  |  |  |  |  |  |  |
| 154 | 2 | Space Heating - ectric Boilers | Hig Efficiency Hot Water Boile ( $\leqslant 3000000$ Buh $)$ | 101,458 | 3 | 4010 | 0.0 | (375.00) | 3 | \$13,497 | 13 |
| 155 | 2 | Space Heating - leatric Boilers | Condensing Eiler ( $<-300,000$ Btuh) (APUEP90\%) | 101,458 | 3 | 4128 | 0.0 | (360.60) | 3 | \$15,406 | 14 |
| 200 |  |  | Same Hatiog- Eleatio Firman |  |  |  |  |  |  |  |  |
| 201 | 2 | Space Heating - Eectric Fumance | High Efficiency Fumace ( $=3000,000$ Btuht (APUE $=92 \%$ ) | 61,627 | 4 | 9.9 | 0.0 | (2228) | 4 | \$20,741 | 15 |
| 300 |  |  |  |  |  |  |  |  |  |  |  |
| 301 | 2 | Space Heating- Packaged Resistance Heal | Đectric Packaged Resistance Heat to Gas-fired Rooftop Unit | 61,627 | 4 | 9.9 | 0.0 | (22283) | 4 | \$22,232 | 16 |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 321 | 2 | Space Heating- Packaged HP, 10 tons | High Efficiency Fumace ( $\leqslant 300,000$ Btuh | 69,700 | 5 | 112 | 0.0 | (25202) | 5 | \$21,232 | 16 |
| 341 | 2 | Space Heating-Split HP, 5 tons | High Efficiency Fumace ( $<330,000$ Btuh | 34,850 | 6 | 5.6 | 0.0 | (126.01) | 6 | \$8,400 | 17 |
| 400 Spare Heating-Electic Easebard |  |  |  |  |  |  |  |  |  |  |  |
| 401 | 2 | Space Heating - Eleatic Baseboard | High Efficiency Fumace (<-300,000 Btuh) | 61,627 | 4 | 9.9 | 0.0 | (22283) | 4 | \$15,699 | 18 |


| MEA Fuel Switching Study- August 12 - Commercial Measure Database |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | Cost Type: 1=Full $2=\mathrm{mc}$. | End Use | Measure Name | Source Notes | Cost/Unit Descriptor | Persistence Factor | Measure Life | Effective Measure Life | Measure Life Source |
| 100 |  |  | Water Heating |  |  |  |  |  |  |
| 101 | 2 | Water Heating | On-Demand, Tankless Water Heater (40 gallon, 40,000Btuh) |  | \$/unit | 1 | 20.0 | 20.0 | 1 |
| 102 | 2 | Water Heating | On-Demand, Tankless Water Heater High Efficiency (40 gallon, 40,000Btuh) |  | \$/unit | 1 | 20.0 | 20.0 | 1 |
| 103 | 2 | Water Heating | On-Demand, Tankess Water Heater (2 Units, 314,000Btuh) | FEMP calculator shows 9528 annual kWH- for 120 gal tank water heater (equates to 3-120 gallon tanks). From Rinnai Website $157,000 \mathrm{BTU}$ Uh is equivalent to 50 gal water heater. Based on this ratio would need 2 tankless | \$/unit | 1 | 20.0 | 20.0 | 1 |
| 104 | 2 | Water Heating | $\begin{array}{l}\text { High Efficiency Stand Alone Commercial Water Heater (Baseline }<=75000 \\ \text { Btu) }\end{array}$ |  | \$/unit | 1 | 13.0 | 13.0 | 1 |
| 105 | 2 | Water Heating | Condensing Stand Alone Commercial Water Heater (Baseline >75000 btu) | FEMP calculator shows 9528 annual kWH for 120 gal tank water heater (equates to $4-120$ gallon tanks). Vas ues = 108MMBTU- FEMP website estiamted annul use this would require 3 condenting gas water heaters. | \$/unit | 1 | 13.0 | 13.0 | 1 |
| 106 | 2 | Water Heating | Indirect Water Heater - Combined appliance efficiency rating (CAE) $>=85 \%$ | Gas unit Based on NEEP incremental cost study (average of about $\$ 2 \mathrm{k}$ versus stanadard gas) plus additional incremental cost (std electric versus standard gas - standard gas cost from CA Codes and Standards Report, October 2011) | \$/unit | 1 | 15.0 | 15.0 | 1 |
| 150 |  |  | Spare Heating-Electic Boilers |  |  |  |  |  |  |
| 154 | 2 | Space Heating- Eectric Boilers | High Efficiency Hot Water Boiler (<=300,000 Btuh) |  | \$/unit | 1 | 20.0 | 20.0 | 1 |
| 155 | 2 | Space Heating- Eectric Boilers | Condensing Boiler ( $<=300,000$ Btuh) (AFUE $>90 \%$ ) |  | \$/unit | 1 | 18.0 | 18.0 | 1 |
| 200 |  |  | Space Heating- Eectric Fumance |  |  |  |  |  |  |
| 201 | 2 | Space Heating- lectric Fumance | High Efficiency Fumace (<=300,000 Btuh) (AFUE>=92\%) | 5 Electric Units or 4 Gas Units | \$/unit | 1 | 18.0 | 18.0 | 1 |
| 300 |  |  | Space Heating-Packeged Resistance Heat |  |  |  |  |  |  |
| 301 | 2 | Space Heating- Packaged Resistance Heat | Electric Packaged Resistance Heat to Gas-fired Rooftop Unit | Four 10 Ton Units required for both electric and gas | \$/unit | 1 | 18.0 | 18.0 | 1 |
| 320 |  |  | Space Heating- Packeged HP, 10 tons |  |  |  |  |  |  |
| 321 | 2 | Space Heating- Packaged HP, 10 tons | High Efficiency Fumace ( $<=300,000$ Btuh ) | Four 10 Ton Units required for both electric and gas | \$/unit | 1 | 18.0 | 18.0 | 1 |
| 341 | 2 | Space Heating- Split HP, 5 tons | High Efficiency Fumace ( $<=300,000$ Btuh $)$ | Seven 5 Tons units required for both electric and gas | \$/unit | 1 | 18.0 | 18.0 | 1 |
| 400 |  |  | Spare Haating-Electric Baseboard |  |  |  |  |  |  |
| 401 | 2 | Space Heating- Electric Baseboard | High Efficiency Fumace (<=300,000 Btuh) | 5 Electric Units and 4 Gas Units | \$/unit | 1 | 18.0 | 18.0 | 1 |


| MEA Fuel Switching Study- August 12 - Commercial Measure Database |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | Cost Type: 1=Full 2=lnc. | End Use | Measure Name | Annualized cost | Levelized cost per kWh saved | Savings Factor | TRCB/C Ratios |
| 100 |  |  | Water Heating |  |  |  |  |
| 101 | 2 | Water Heating | On-Demand, Tankless Water Heater (40 gallon, 40,000Btuh) | \$97.68 | \$ 0.01447 | 100\% | 3.43 |
| 102 | 2 | Water Heating | On-Demand, Tankless Water Heater High Efficiency (40 gallon, 40,000Btuh) | \$106.43 | \$ 0.01360 | 100\% | 4.01 |
| 103 | 2 | Water Heating | On-Demand, Tankless Water Heater (2 Units, 314,000Btuh) | \$275.45 | \$ 0.00921 | 100\% | 5.53 |
| 104 | 2 | Water Heating | High Efficiency Stand Aone Commercial Water Heater (Baseline $<=75000$ Btu) | \$83.81 | \$ 0.01524 | 100\% | 3.46 |
| 105 | 2 | Water Heating | Condensing Stand Alone Cormercial Water Heater (Baseline >75000 btu) | \$1,271.69 | \$ 0.03758 | 100\% | 1.77 |
| 106 | 2 | Water Heating | Indirect Water Heater - Combined appliance efficiency rating (CAE) $=$ =85\% | \$562.28 | \$ 0.01948 | 100\% | 2.96 |
| 150 |  |  | Spame Heating-Electic Boilers |  |  |  |  |
| 154 | 2 | Space Heating- Electric Boilers | High Efficiency Hot Water Boiler ( $<=300,000$ Btuh) | \$674.85 | 0.00665 | 100\% | 3.71 |
| 155 | 2 | Space Heating- Electric Boilers | Condensing Boiler ( $<3300,000$ Btuh) (AFUE $>90 \%$ ) | \$855.89 | \$ 0.00844 | 100\% | 3.33 |
| 200 |  |  | Space Heating- Eectric Furmance |  |  |  |  |
| 201 | 2 | Space Heating- Dectric Furmance | High Efficiency Fumace (<=300,000 Btuh) (AFUE $>=92 \%$ ) | \$1,152.29 | \$ 0.01870 | 100\% | 1.92 |
| 300 |  |  | Space Heating- Packeyed Resistanoe Heat |  |  |  |  |
| 301 | 2 | Space Heating- Packaged Resistance Heat | Electric Packaged Resistance Heat to Gas-fired Rooftop Unit | \$1,179.56 | \$ 0.01914 | 100\% | 1.43 |
| 320 |  |  | Space Heating- Packeged HP, 10 tons |  |  |  |  |
| 321 | 2 | Space Heating- Packaged HP, 10 tons | High Efficiency Fumace (<=300,000 Btuh) | \$1,179.56 | \$ 0.01692 | 100\% | 2.12 |
| 341 | 2 | Space Heating- Split HP, 5 tons | High Efficiency Fumace ( $<=300,000$ Btuh ) | \$466.67 | \$ 0.01339 | 100\% | 2.68 |
| 400 |  |  | Space Haating-Electic Baseboard |  |  |  |  |
| 401 | 2 | Space Heating- Electric Baseboard | High Efficiency Fumace (<=300,000 Btuh) | \$871.62 | \$ 0.01414 | 100\% | 2.54 | 3 difference ( $95 \%$ vs. $85 \%$ ), and size 210,000 Btu vs. 100,000 Btu) Base Use $=375 \mathrm{MMBtu}$

Baseline - NYSERDA Deemed Savings Database, Rev 09-082006 (NYSERDA data adjusted to account for location -- Used Baltimore, measure efficiency difference, $492 \%$ vs. $90 \%$ and size 120,00 Btu vs. 80,000 Btu) Base Use $=222.83 \mathrm{MMBtu}$
5 Baseline - Energy Star Air Source Heat Pump Calculator 10 Ton HP ( $43,542 \mathrm{kWh}$ ) + FEMP Unitary 10 Ton A/C unit ( $26,158 \mathrm{kWh}$ ) - Total 67,700 kWh 6 Baseline - Energy Star Air Source Heat Pump Calculator 5 Ton HP ( $21,771 \mathrm{kWh}$ ) + FEMP Unitary 5 Ton A/C unit ( $13,079 \mathrm{kWh}$ ) - Total $34,850 \mathrm{kWh}$ 7 Electric: RS Means, Gas: GN Study $+\$ 700$ Power Vent Kit 8 Electric: RS Means, Gas: GN Study $+\$ 700$ Power Vent Kit 9 Electric: RS Means, Gas: GN Study + \$700 Power Vent Kit
10 Electric: RS Means Residential Sized Water Heater, Gas: GN Study $+\$ 700$ Power Vent Kit
11 Electric/Gas : RS Means. $100 \mathrm{MBH}, 50$ Gallon Commercial Water Heater, Gas + $\$ 700$ Power Vent Kit
12 Electric: RS Means, Gas: GN Study $+\$ 700$ Power Vent Kit
410 MBH Electric Boiler, RS Means including installation Labor: 235213102070 , Gas: Crown BWC425 Bimini Commercial Electronic Ingnition Condensing Boiler -
13 priced on Younits.com $+\$ 500$ venting $+\$ 700$ Chimney liner +849 Inslall labor
14410 MBH Electric Boiler, RS Means including installation Labor, Gas: RS Means + \$500 Venting + \$700 Chimney Liner
BC HYDRO POWER SMART 2007 CONSERVATION POTENTIAL REVIEW: The Potential for Electricity Savings through Fuel Switching, 2006-2026 Commercial
16 Sector in British Columbia
17 Assumes (5 ton RTU - DX unit) - MSI Webpage
18 Electric: 85.3 MBH Electric, Gas: RS Means 100 MBH $+\$ 2.50 \times 20,208$ Avg SqFt Installation x $10 \%$ of Buildings w/o Ducts

## APPENDIX B-2

## Commercial Potential Data



## APPENDIX C

Benefit/Cost Model Inputs \& Assumptions

## Avoided Cost Data Format: Real


General Modeling Assumptions \＆Avoided Cost

|  |  |  |  <br>  |
| :---: | :---: | :---: | :---: |
|  |  |  |  <br>  |
|  |  |  |  <br>  |
| 号 | 亏 |  |  |
| － |  | 気気会 |  <br>  |
|  |  |  |  0000000000000000000000000000000 |
|  |  |  |  <br>  |
|  |  |  |  0000000000000000000000000000000 |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  <br>  |
|  |  |  |  |

## APPENDIX D <br> Additional Fuel Switching Program

# Natural Gas in a Smart Energy System 

## American Gas Association <br> http://www.aga.org/our-issues/energyefficiency/Pages/NaturalGasinaSmartEnergySystem. aspx <br> The world in which utility companies deliver energy is changing

Amidst pending carbon legislation, emerging "smart" technology, and increasingly integrated, consumer-driven energy markets, electric and natural gas utilities are exploring both new requirements and new opportunities. In this changing world, utilities must take a more holistic look at our energy system in order to continue serving the needs of American homes and businesses in the most cost-effective and environmentally sustainable way.

Increasingly, electric and combination utilities are considering direct use of natural gas as a way to achieve electric demand side management (DSM) goals such as reduction in the rate of growth of peak demand, and lower overall use of primary energy.

## Encouraging the use of natural gas where it is a viable substitute for electricity and converting loads currently served by electricity to natural gas will:

- Improve the efficiency with which energy is consumed
- Reduce electricity usage
- Reduce CO2 emissions and could become an important component of an electric utilities overall energy efficiency strategy


## Resources for understanding the issues associated with natural gas end use as an electric DSM tool (Smart DSM):

- Northwest Gas Association Assessment of the Potential Benefits of Direct Use of Natural Gas - An assessment of the potential benefits of natural gas as a regional resource strategy. This study finds there is potential for direct use of natural gas to reduce regional greenhouse gas emissions by 1.3 million tons annually beginning in 2009.
- NRRI Study - Electric-to-Gas Substitution: What Should Regulators Do? - On May 29, 2009, the National Regulatory Research Institute (NRRI) published a study on "fuel switching," discussing the benefits and costs, market defects and regulator options. Electric-to-gas substitution or fuel switching refers to the decision of small, generally residential, consumers to use natural gas rather than electricity for certain enduse applications, such as space heating, water heating, cooking and clothes drying. The study states that if there are market barriers, imperfections or regulatory obstacles that prevent consumers from making rational or socially desirable end-use appliance decisions, regulatory intervention may be appropriate where the regulatory intervention passes a cost-benefit test.
- Electric-to-Gas Fuel Switching Presentation by consultant Paul Raab at the summer meeting of the National Association of Regulatory Commissioners (NARUC) on June 20, 2009.


## Examples of proceedings in states where Commissions have received comments related to Smart DSM:

- Oklahoma (various utilities) - Oklahoma Natural Gas presented testimony demonstrating direct use of natural gas as effective and cost-effective for acheiving electric efficiency goals. One accomplishment of the ruling was that utilities would in the future be allowed to promote natural gas as an electric DSM tool if it "supports the goals of the commission." A filing of this nature is planned for later this year or early next. See the record (Docket No. RM-200700007) for a summary of written comments filed at the Commission. See Appendix A for summary of latest comments as of November 28, 2008 regarding fuel-switching. The appendix includes comments from regional utilties including: Centerpoint Energy Page 2; OG\&E Page 3; ONG Page 4; PSO Page 5.
- Pennsylvania (UGI) - In Pennsylvania, Act 129 mandates electric efficiency targets. UGI is successfully reaching out to electric utilities to show how natural gas can serve as a DSM tool. See Comments of UGI Utilities, Inc. filed March 12, 2009. The concept is receiving good reception so far; of the four electric utilities with filings, two include natural gas. See the record (Docket No. M-2008-2069887) for a view of the Case Summary, Daily Actions and public documents associated with the selected docket number.
- Kansas (Kansas Gas) - In May 2009, the Kansas Comission concluded a hearing on fuel-switching, to determine "whether it is appropriate to offer incentives to encourage customers to behave in consumer switching behavior." See the record (Docket No. 09-GIMX-160-GIV) for example of how commission staff are responding to the concept in general.


[^0]:    ${ }^{1}$ National Action Plan for Energy Efficiency: Guide for Conducting Energy Efficiency Potential Studies, November 2007.

[^1]:    ${ }^{2}$ Reproduced from "Guide to Resource Planning with Energy Efficiency" November 2007. ES EPA. Figure 2-1.

[^2]:    ${ }^{3}$ As discussed in Chapter 5, the significant potential for savings associated with gas drying is due to the large percentage of customers with current gas connections who continue to use electric dryers compared to the percentage of customers with gas connections who continue to use electric space heating and electric water heating equipment. The analysis assumes that 100\% of customers with current gas connections can be converted, while only $6.5 \%$ of customers not currently connected to gas will have the opportunity to switch to natural gas over the course of the study.

[^3]:    ${ }^{4}$ Maryland Baseline Studies - Commercial and Industrial Sectors. Itron. December 2010.
    ${ }^{5}$ Maryland Energy Baseline Study - Residential Sector. KEMA. June 2011.
    ${ }^{6}$ This forecast was developed by GDS in the summer of 2012 based upon current electric energy use in Maryland and EIA's 2011 long term electric sales forecast for the South Atlantic region.

[^4]:    ${ }^{7}$ REM/Rate ${ }^{T M}$ software (a product of Architectural Energy Corporation) calculates heating, cooling, hot water, lighting, and appliance energy loads, consumption and costs for new and existing single and multifamily homes. Climate data is available for cities and towns throughout North America.

[^5]:    ${ }^{8}$ The source of this data is the 2011 Maryland Energy Baseline Study prepared for the Maryland Public Service Commission by KEMA.

[^6]:    ${ }^{9}$ The appendices to this report provide the data sources used by the GDS Team to obtain up-to-date data on measure costs, savings and useful lives.

[^7]:    ${ }^{10}$ Maryland Energy Baseline Study, Residential Sector, prepared for the Maryland Public Service Commission and its sponsors in support of the EmPower Maryland Programs, June 2011.
    ${ }^{11}$ Maryland Baseline Study -Commercial and Industrial Sectors prepared by Itron/Kema for the Maryland Public Service Commission and its sponsors in support of the EmPower Maryland Programs, December 2010.

[^8]:    ${ }^{12}$ Reproduced from "Guide to Resource Planning with Energy Efficiency" November 2007. ES EPA. Figure 2-1.
    ${ }^{13}$ National Action Plan for Energy Efficiency, "Guide for Conducting Energy Efficiency Potential Studies", page 2-4

[^9]:    ${ }^{14}$ National Action Plan for Energy Efficiency: Guide for Conducting Energy Efficiency Potential Studies, November 2007.
    ${ }^{15}$ California Public Utilities Commission, California Standard Practice Manual, Economic Analysis of Demand-Side Management Programs and Projects, October 2001, page 18.

[^10]:    ${ }^{16}$ After accounting for adjustments to different home types, housing characteristics and efficiency tiers, particularly for measures targeting the space heating and water heating end-use, the number of measures grew to 114 measure permutations.

[^11]:    ${ }^{17}$ The demand savings in the technical and economic potential scenarios are the same. This is because there is no demand savings associated with the measures that did not pass the economic screening for cost-effective measures.

[^12]:    18 Summary Report of Recently Completed Potential Studies and Recommendations for Maine's Energy Efficiency Programs, January 22, 2010. Prepared for Maine Public Utility Commission by Summit Blue Consulting, LLC and American Council for an Energy Efficient Economy.
    ${ }^{19}$ Cost attribution refers to the allocation of cost to multiple parties (e.g., electric and gas programs or utilities) in proportion to the electric and fuel savings that result from a given energy efficiency measure.

